Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.

Identifieur interne : 001E18 ( PubMed/Corpus ); précédent : 001E17; suivant : 001E19

A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.

Auteurs : Xiaotu Ma ; Ashwinikumar Kulkarni ; Zhihua Zhang ; Zhenyu Xuan ; Robert Serfling ; Michael Q. Zhang

Source :

RBID : pubmed:22228832

English descriptors

Abstract

Identification of DNA motifs from ChIP-seq/ChIP-chip [chromatin immunoprecipitation (ChIP)] data is a powerful method for understanding the transcriptional regulatory network. However, most established methods are designed for small sample sizes and are inefficient for ChIP data. Here we propose a new k-mer occurrence model to reflect the fact that functional DNA k-mers often cluster around ChIP peak summits. With this model, we introduced a new measure to discover functional k-mers. Using simulation, we demonstrated that our method is more robust against noises in ChIP data than available methods. A novel word clustering method is also implemented to group similar k-mers into position weight matrices (PWMs). Our method was applied to a diverse set of ChIP experiments to demonstrate its high sensitivity and specificity. Importantly, our method is much faster than several other methods for large sample sizes. Thus, we have developed an efficient and effective motif discovery method for ChIP experiments.

DOI: 10.1093/nar/gkr1135
PubMed: 22228832

Links to Exploration step

pubmed:22228832

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.</title>
<author>
<name sortKey="Ma, Xiaotu" sort="Ma, Xiaotu" uniqKey="Ma X" first="Xiaotu" last="Ma">Xiaotu Ma</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kulkarni, Ashwinikumar" sort="Kulkarni, Ashwinikumar" uniqKey="Kulkarni A" first="Ashwinikumar" last="Kulkarni">Ashwinikumar Kulkarni</name>
</author>
<author>
<name sortKey="Zhang, Zhihua" sort="Zhang, Zhihua" uniqKey="Zhang Z" first="Zhihua" last="Zhang">Zhihua Zhang</name>
</author>
<author>
<name sortKey="Xuan, Zhenyu" sort="Xuan, Zhenyu" uniqKey="Xuan Z" first="Zhenyu" last="Xuan">Zhenyu Xuan</name>
</author>
<author>
<name sortKey="Serfling, Robert" sort="Serfling, Robert" uniqKey="Serfling R" first="Robert" last="Serfling">Robert Serfling</name>
</author>
<author>
<name sortKey="Zhang, Michael Q" sort="Zhang, Michael Q" uniqKey="Zhang M" first="Michael Q" last="Zhang">Michael Q. Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22228832</idno>
<idno type="pmid">22228832</idno>
<idno type="doi">10.1093/nar/gkr1135</idno>
<idno type="wicri:Area/PubMed/Corpus">001E18</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.</title>
<author>
<name sortKey="Ma, Xiaotu" sort="Ma, Xiaotu" uniqKey="Ma X" first="Xiaotu" last="Ma">Xiaotu Ma</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kulkarni, Ashwinikumar" sort="Kulkarni, Ashwinikumar" uniqKey="Kulkarni A" first="Ashwinikumar" last="Kulkarni">Ashwinikumar Kulkarni</name>
</author>
<author>
<name sortKey="Zhang, Zhihua" sort="Zhang, Zhihua" uniqKey="Zhang Z" first="Zhihua" last="Zhang">Zhihua Zhang</name>
</author>
<author>
<name sortKey="Xuan, Zhenyu" sort="Xuan, Zhenyu" uniqKey="Xuan Z" first="Zhenyu" last="Xuan">Zhenyu Xuan</name>
</author>
<author>
<name sortKey="Serfling, Robert" sort="Serfling, Robert" uniqKey="Serfling R" first="Robert" last="Serfling">Robert Serfling</name>
</author>
<author>
<name sortKey="Zhang, Michael Q" sort="Zhang, Michael Q" uniqKey="Zhang M" first="Michael Q" last="Zhang">Michael Q. Zhang</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>CCCTC-Binding Factor</term>
<term>Chromatin Immunoprecipitation</term>
<term>Cluster Analysis</term>
<term>Computer Simulation</term>
<term>Drosophila melanogaster (genetics)</term>
<term>Embryonic Stem Cells (metabolism)</term>
<term>Gene Regulatory Networks</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Mice</term>
<term>Nucleotide Motifs</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Regulatory Elements, Transcriptional</term>
<term>Repressor Proteins</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>CCCTC-Binding Factor</term>
<term>Repressor Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drosophila melanogaster</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryonic Stem Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Chromatin Immunoprecipitation</term>
<term>Cluster Analysis</term>
<term>Computer Simulation</term>
<term>Gene Regulatory Networks</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Mice</term>
<term>Nucleotide Motifs</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Regulatory Elements, Transcriptional</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identification of DNA motifs from ChIP-seq/ChIP-chip [chromatin immunoprecipitation (ChIP)] data is a powerful method for understanding the transcriptional regulatory network. However, most established methods are designed for small sample sizes and are inefficient for ChIP data. Here we propose a new k-mer occurrence model to reflect the fact that functional DNA k-mers often cluster around ChIP peak summits. With this model, we introduced a new measure to discover functional k-mers. Using simulation, we demonstrated that our method is more robust against noises in ChIP data than available methods. A novel word clustering method is also implemented to group similar k-mers into position weight matrices (PWMs). Our method was applied to a diverse set of ChIP experiments to demonstrate its high sensitivity and specificity. Importantly, our method is much faster than several other methods for large sample sizes. Thus, we have developed an efficient and effective motif discovery method for ChIP experiments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22228832</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.</ArticleTitle>
<Pagination>
<MedlinePgn>e50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkr1135</ELocationID>
<Abstract>
<AbstractText>Identification of DNA motifs from ChIP-seq/ChIP-chip [chromatin immunoprecipitation (ChIP)] data is a powerful method for understanding the transcriptional regulatory network. However, most established methods are designed for small sample sizes and are inefficient for ChIP data. Here we propose a new k-mer occurrence model to reflect the fact that functional DNA k-mers often cluster around ChIP peak summits. With this model, we introduced a new measure to discover functional k-mers. Using simulation, we demonstrated that our method is more robust against noises in ChIP data than available methods. A novel word clustering method is also implemented to group similar k-mers into position weight matrices (PWMs). Our method was applied to a diverse set of ChIP experiments to demonstrate its high sensitivity and specificity. Importantly, our method is much faster than several other methods for large sample sizes. Thus, we have developed an efficient and effective motif discovery method for ChIP experiments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xiaotu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kulkarni</LastName>
<ForeName>Ashwinikumar</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhihua</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xuan</LastName>
<ForeName>Zhenyu</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Serfling</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Michael Q</ForeName>
<Initials>MQ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HG001696</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076246">CCCTC-Binding Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000619698">Ctcf protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076246" MajorTopicYN="N">CCCTC-Binding Factor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="Y">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053595" MajorTopicYN="N">Embryonic Stem Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="N">Nucleotide Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050436" MajorTopicYN="Y">Regulatory Elements, Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22228832</ArticleId>
<ArticleId IdType="pii">gkr1135</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkr1135</ArticleId>
<ArticleId IdType="pmc">PMC3326300</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Dec 24;330(6012):1787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Nov;20(11):1512-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20693478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011;7(2):e1001070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 8;286(14):11985-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21543442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Aug;39(15):e98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21602262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):345-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2002;9(2):225-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Aug;20(8):835-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002;18 Suppl 1:S354-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3586-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Oct 8;262(5131):208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8211139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1998 Oct;16(10):939-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9788350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jan 1;21(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15333453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Jan;23(1):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Feb 1;21(3):307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16011807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 15;22(14):e150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Mar 23;128(6):1231-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 May 18;129(4):823-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Mar 30;3(3):e61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 8;316(5830):1497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(10):3203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Jul;4(7):563-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17589518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Aug;4(8):651-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17558387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jun 13;133(6):1106-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18533028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jul;18(7):1180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18411406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Aug;36(14):4549-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Sep;36(16):5221-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Nov;26(11):1293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 20;456(7220):400-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Sep;5(9):829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19160518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Apr;10(4):252-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Sep;37(17):e113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Mar;8(3):e1000343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Apr;38(7):2154-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 May 1;26(9):1152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20223835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Jul 7;29(13):2147-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20517297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(7):e11425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(7):e11471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 15;26(20):2622-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20736340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Nov;11(11):751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20877328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 24;330(6012):1775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177976</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001E18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22228832
   |texte=   A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22228832" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021