Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neurosteroids, trigger of the LH surge.

Identifieur interne : 001E07 ( PubMed/Corpus ); précédent : 001E06; suivant : 001E08

Neurosteroids, trigger of the LH surge.

Auteurs : John Kuo ; Paul Micevych

Source :

RBID : pubmed:22326732

English descriptors

Abstract

Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.

DOI: 10.1016/j.jsbmb.2012.01.008
PubMed: 22326732

Links to Exploration step

pubmed:22326732

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neurosteroids, trigger of the LH surge.</title>
<author>
<name sortKey="Kuo, John" sort="Kuo, John" uniqKey="Kuo J" first="John" last="Kuo">John Kuo</name>
<affiliation>
<nlm:affiliation>Department of Neurobiology, Laboratory of Neuroendocrinology of the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Micevych, Paul" sort="Micevych, Paul" uniqKey="Micevych P" first="Paul" last="Micevych">Paul Micevych</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22326732</idno>
<idno type="pmid">22326732</idno>
<idno type="doi">10.1016/j.jsbmb.2012.01.008</idno>
<idno type="wicri:Area/PubMed/Corpus">001E07</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neurosteroids, trigger of the LH surge.</title>
<author>
<name sortKey="Kuo, John" sort="Kuo, John" uniqKey="Kuo J" first="John" last="Kuo">John Kuo</name>
<affiliation>
<nlm:affiliation>Department of Neurobiology, Laboratory of Neuroendocrinology of the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Micevych, Paul" sort="Micevych, Paul" uniqKey="Micevych P" first="Paul" last="Micevych">Paul Micevych</name>
</author>
</analytic>
<series>
<title level="j">The Journal of steroid biochemistry and molecular biology</title>
<idno type="eISSN">1879-1220</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Astrocytes (metabolism)</term>
<term>Estradiol (physiology)</term>
<term>Estrogen Receptor alpha (metabolism)</term>
<term>Feedback</term>
<term>Female</term>
<term>Glutamates (physiology)</term>
<term>Luteinizing Hormone (metabolism)</term>
<term>Male</term>
<term>Mice</term>
<term>Rats</term>
<term>Receptors, Estrogen</term>
<term>Receptors, G-Protein-Coupled (physiology)</term>
<term>Receptors, Metabotropic Glutamate (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Estrogen Receptor alpha</term>
<term>Luteinizing Hormone</term>
<term>Receptors, Metabotropic Glutamate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Estradiol</term>
<term>Glutamates</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Astrocytes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Feedback</term>
<term>Female</term>
<term>Male</term>
<term>Mice</term>
<term>Rats</term>
<term>Receptors, Estrogen</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22326732</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1220</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>131</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of steroid biochemistry and molecular biology</Title>
<ISOAbbreviation>J. Steroid Biochem. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Neurosteroids, trigger of the LH surge.</ArticleTitle>
<Pagination>
<MedlinePgn>57-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jsbmb.2012.01.008</ELocationID>
<Abstract>
<AbstractText>Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurobiology, Laboratory of Neuroendocrinology of the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Micevych</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HD00849-23</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HD042635</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K12 HD000849</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HD042635</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DA013185</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HD001281</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DA013185</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K12 HD001281</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Steroid Biochem Mol Biol</MedlineTA>
<NlmUniqueID>9015483</NlmUniqueID>
<ISSNLinking>0960-0760</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047628">Estrogen Receptor alpha</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C532507">GPER1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005971">Glutamates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C520305">Gper1 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011960">Receptors, Estrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018094">Receptors, Metabotropic Glutamate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4TI98Z838E</RegistryNumber>
<NameOfSubstance UI="D004958">Estradiol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9002-67-9</RegistryNumber>
<NameOfSubstance UI="D007986">Luteinizing Hormone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001253" MajorTopicYN="N">Astrocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004958" MajorTopicYN="N">Estradiol</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047628" MajorTopicYN="N">Estrogen Receptor alpha</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005246" MajorTopicYN="N">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005971" MajorTopicYN="N">Glutamates</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007986" MajorTopicYN="N">Luteinizing Hormone</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011960" MajorTopicYN="N">Receptors, Estrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018094" MajorTopicYN="N">Receptors, Metabotropic Glutamate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22326732</ArticleId>
<ArticleId IdType="pii">S0960-0760(12)00030-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.jsbmb.2012.01.008</ArticleId>
<ArticleId IdType="pmc">PMC3474707</ArticleId>
<ArticleId IdType="mid">NIHMS354742</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neuroendocrinology. 2010;91(3):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20332598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2009 Mar;150(3):1369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2008 Aug 13;290(1-2):44-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18572304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 1999 Nov;71(1-2):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10619356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1975 Jan;96(1):219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1167352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Jan 10;27(2):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2002 Oct;14(10):829-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2009 Jan;30(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 1999 May;127(1):177-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10369471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2001 Jun;142(6):2336-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11356680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2008 Dec;149(12):5934-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2005 Oct;146(10):4331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurobiol. 1999 Sep 15;40(4):574-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10453057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 1994 Jul 1;38(4):386-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7932871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2000 Dec 28;43(26):4934-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2000 Apr;141(4):1477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10746653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Aug;78(8):4704-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6458035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2005;134(1):81-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1997 Jan;138(1):507-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8977441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 3;282(31):22278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Jun 9;268(5216):1500-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7770777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Apr;121(1):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8458866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Aug 4;346(3):904-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2003 Aug 29;206(1-2):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12943986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Res. 2000 Jan;36(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10678526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Jan;16(1):231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 2007 Apr;193(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2009 Aug;150(8):3699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 11;307(5715):1625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2006 Oct 19;52(2):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 2002 Jun;75(6):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2006;138(3):967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Oct 15;22(20):9005-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Mar 20;211(4488):1294-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6163211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1995 Aug;65(2):528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7616206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 1974 Jun;61(3):511-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4835436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2006 Sep;20(9):1996-2009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1975 Jan;96(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1167355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 1975 Aug;32(2):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1240004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1998 Dec;139(12):5070-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9832446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Dev Brain Res. 1989 Jun 1;47(2):298-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2743562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 1992 Nov;51(1):159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1465179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 1971 May;50(1):29-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4325618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Reprod Fertil. 1999 Mar;115(2):269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10434932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Sep 29;30(39):12950-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20881113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 1998 Dec;63(12):616-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9870258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2000 Oct;14(10):1649-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11043579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Aug 24;317(5841):1083-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17717185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Sep 4;237(4819):1212-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3306919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 1993 Nov;9(3):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2008 Aug 13;290(1-2):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18538919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2003 Jan;144(1):274-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12488355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1995 May;136(5):2341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7720682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1993 Dec 3;629(2):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8111631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 1968;3(6):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5752038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1992 Jan 15;52(2):483-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1728420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2000 May;14(5):634-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 1998 Jul;33(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9694037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 1992;6(3):180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1478729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Feb 21;27(8):2102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 1999 Feb;13(2):307-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 2002 Sep;67(3):691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Dec 2;29(48):15323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Oncol. 2008;30(5):435-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Feb;148(2):782-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1976 Sep 10;114(1):152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">986858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Sex Differ. 2010 Nov 22;1(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21208471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1972 May;90(5):1154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5062474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Apr 1;29(13):4228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 1986 Dec;35(5):1154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3103699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2009 Mar;21(4):370-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19226350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2006 Apr;2(4):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2005 Feb;146(2):624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2006 Dec;147(12):5817-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2006 Feb 26;246(1-2):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2009 Dec;20(10):471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1999 Aug;140(8):3843-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10433246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropathology. 2009 Feb;29(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1974 Jun;94(6):1704-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4857496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2007 Jul 1;503(1):198-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17480015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Aug 29;27(35):9294-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 1997 Feb;65(2):136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9067991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2006 Jun;209(Pt 12):2304-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gynecol Endocrinol. 1988 Jun;2(2):165-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3055821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2005 Nov;19(11):2647-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2009 Jan 15;57(2):153-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18709647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1970 Sep;87(3):542-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5463820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Acad Sci III. 1989;308(6):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2493969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 22;23(29):9529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 May 24;26(21):5649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2008 Jun;149(6):2739-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18308840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Oct 1;22(19):8391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2002 Jan;16(1):70-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2005 May;50(3):270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15712205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2004 Aug;145(8):3788-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1989 Oct;125(4):2083-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2791979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 1998 May-Jun;63(5-6):252-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Novartis Found Symp. 2000;230:56-69; discussion 69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10965502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10418983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Sep 22;30(38):12589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2013 Jun;78(6):607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2001 Jan 15;429(3):355-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 2003 Jul;78(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1976 Nov;99(5):1252-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">991819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 2000 Jun;62(6):1710-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10819775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 1998 Jun;19(3):302-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9626556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 1995 Mar 24;276(1-2):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7781684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1974 Dec;95(6):1711-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4474075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Comp Endocrinol. 2008 Feb 1;155(3):857-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18067893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Mar 17;341(3):874-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2006;138(3):851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2007 Dec;28(7):726-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2008 Oct;73(9-10):985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Growth Horm IGF Res. 2004 Jun;14 Suppl A:S18-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15135772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2009 Aug;30(3):315-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Jul;148(7):3236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 May 18;25(20):5066-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 1991;71(1-2):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1912947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Rev. 2008 Mar;57(2):470-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17850878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Feb 21;16(4):415-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16488877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2001 Jan 19;889(1-2):264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Mol Brain Res. 1995 Jun;30(2):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7637579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 1998 Jan;10(1):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9753134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroendocrinology. 1996 Aug;64(2):114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8857605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2007 Feb;38(1-2):35-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Neurosci. 2003 Sep-Oct;25(5):343-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14614261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrine. 2003 Dec;22(3):211-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14709794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1967 Oct;58(4):1711-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4295833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 2005 Apr;48(2):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15850667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 1999 May;26(3):260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10340766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurobiol. 2006 Nov;66(13):1411-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17013925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Endocrinol Metab. 1994 May;78(5):1003-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8175951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1985;61 Suppl 3:38-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3908433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 1996 Jun;17(3):221-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8771357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Jul 1;69(13):5415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 1980 Jan;84(1):75-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7188951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2001 Nov 22;44(24):4230-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11708925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1998 Sep 1;18(17):6672-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9712639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2008 Jul 17;154(4):1173-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 1969 Dec;85(6):1070-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5388410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001E07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22326732
   |texte=   Neurosteroids, trigger of the LH surge.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22326732" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021