Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants.

Identifieur interne : 001D97 ( PubMed/Corpus ); précédent : 001D96; suivant : 001D98

Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants.

Auteurs : Nicole Gruenheit ; Oliver Deusch ; Christian Esser ; Matthias Becker ; Claudia Voelckel ; Peter Lockhart

Source :

RBID : pubmed:22417298

English descriptors

Abstract

Transcriptome analysis is increasingly being used to study the evolutionary origins and ecology of non-model plants. One issue for both transcriptome assembly and differential gene expression analyses is the common occurrence in plants of hybridisation and whole genome duplication (WGD) and hybridization resulting in allopolyploidy. The divergence of duplicated genes following WGD creates near identical homeologues that can be problematic for de novo assembly and also reference based assembly protocols that use short reads (35 - 100 bp).

DOI: 10.1186/1471-2164-13-92
PubMed: 22417298

Links to Exploration step

pubmed:22417298

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants.</title>
<author>
<name sortKey="Gruenheit, Nicole" sort="Gruenheit, Nicole" uniqKey="Gruenheit N" first="Nicole" last="Gruenheit">Nicole Gruenheit</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand. nicole.gruenheit@uni-duesseldorf.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deusch, Oliver" sort="Deusch, Oliver" uniqKey="Deusch O" first="Oliver" last="Deusch">Oliver Deusch</name>
</author>
<author>
<name sortKey="Esser, Christian" sort="Esser, Christian" uniqKey="Esser C" first="Christian" last="Esser">Christian Esser</name>
</author>
<author>
<name sortKey="Becker, Matthias" sort="Becker, Matthias" uniqKey="Becker M" first="Matthias" last="Becker">Matthias Becker</name>
</author>
<author>
<name sortKey="Voelckel, Claudia" sort="Voelckel, Claudia" uniqKey="Voelckel C" first="Claudia" last="Voelckel">Claudia Voelckel</name>
</author>
<author>
<name sortKey="Lockhart, Peter" sort="Lockhart, Peter" uniqKey="Lockhart P" first="Peter" last="Lockhart">Peter Lockhart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22417298</idno>
<idno type="pmid">22417298</idno>
<idno type="doi">10.1186/1471-2164-13-92</idno>
<idno type="wicri:Area/PubMed/Corpus">001D97</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants.</title>
<author>
<name sortKey="Gruenheit, Nicole" sort="Gruenheit, Nicole" uniqKey="Gruenheit N" first="Nicole" last="Gruenheit">Nicole Gruenheit</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand. nicole.gruenheit@uni-duesseldorf.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deusch, Oliver" sort="Deusch, Oliver" uniqKey="Deusch O" first="Oliver" last="Deusch">Oliver Deusch</name>
</author>
<author>
<name sortKey="Esser, Christian" sort="Esser, Christian" uniqKey="Esser C" first="Christian" last="Esser">Christian Esser</name>
</author>
<author>
<name sortKey="Becker, Matthias" sort="Becker, Matthias" uniqKey="Becker M" first="Matthias" last="Becker">Matthias Becker</name>
</author>
<author>
<name sortKey="Voelckel, Claudia" sort="Voelckel, Claudia" uniqKey="Voelckel C" first="Claudia" last="Voelckel">Claudia Voelckel</name>
</author>
<author>
<name sortKey="Lockhart, Peter" sort="Lockhart, Peter" uniqKey="Lockhart P" first="Peter" last="Lockhart">Peter Lockhart</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brassicaceae (cytology)</term>
<term>Brassicaceae (genetics)</term>
<term>Contig Mapping</term>
<term>Gene Expression Profiling (methods)</term>
<term>Genes, Plant (genetics)</term>
<term>Polyploidy</term>
<term>Quality Control</term>
<term>RNA, Messenger (genetics)</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Brassicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brassicaceae</term>
<term>Genes, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Contig Mapping</term>
<term>Polyploidy</term>
<term>Quality Control</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transcriptome analysis is increasingly being used to study the evolutionary origins and ecology of non-model plants. One issue for both transcriptome assembly and differential gene expression analyses is the common occurrence in plants of hybridisation and whole genome duplication (WGD) and hybridization resulting in allopolyploidy. The divergence of duplicated genes following WGD creates near identical homeologues that can be problematic for de novo assembly and also reference based assembly protocols that use short reads (35 - 100 bp).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22417298</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants.</ArticleTitle>
<Pagination>
<MedlinePgn>92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-92</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Transcriptome analysis is increasingly being used to study the evolutionary origins and ecology of non-model plants. One issue for both transcriptome assembly and differential gene expression analyses is the common occurrence in plants of hybridisation and whole genome duplication (WGD) and hybridization resulting in allopolyploidy. The divergence of duplicated genes following WGD creates near identical homeologues that can be problematic for de novo assembly and also reference based assembly protocols that use short reads (35 - 100 bp).</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here we report a successful strategy for the assembly of two transcriptomes made using 75 bp Illumina reads from Pachycladon fastigiatum and Pachycladon cheesemanii. Both are allopolyploid plant species (2n = 20) that originated in the New Zealand Alps about 0.8 million years ago. In a systematic analysis of 19 different coverage cutoffs and 20 different k-mer sizes we showed that i) none of the genes could be assembled across all of the parameter space ii) assembly of each gene required an optimal set of parameter values and iii) these parameter values could be explained in part by different gene expression levels and different degrees of similarity between genes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">To obtain optimal transcriptome assemblies for allopolyploid plants, k-mer size and k-mer coverage need to be considered simultaneously across a broad parameter space. This is important for assembling a maximum number of full length ESTs and for avoiding chimeric assemblies of homeologous and paralogous gene copies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gruenheit</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand. nicole.gruenheit@uni-duesseldorf.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deusch</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Esser</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Voelckel</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lockhart</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019607" MajorTopicYN="N">Brassicaceae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020451" MajorTopicYN="N">Contig Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="Y">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011786" MajorTopicYN="N">Quality Control</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22417298</ArticleId>
<ArticleId IdType="pii">1471-2164-13-92</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-92</ArticleId>
<ArticleId IdType="pmc">PMC3378427</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Nov;29(11):987-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22068540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Dec;26(12):2731-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Dec;14(12):680-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19818673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):120-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Dec;216(2):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12447532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Sep;9(9):868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Mar 14;579(7):1683-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15757661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jun;18(6):1524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Dec;1757(12):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1693-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17687051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(12):R175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2009 May;51(2):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19254769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2009;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20307264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Jun 12;365(1547):1717-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2010 Jun;95(6):315-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2010;2010:853916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Oct;20(10):1432-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20693479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4277-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010;11:485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20875133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Nov;7(11):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(12):e14202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21151993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2011 Mar;57(3):391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21192943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Feb;18(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Jun;28(6):1861-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2011 Jul;107(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21139633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Oct;77(3):299-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Oct;12(10):671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21897427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21810238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22016807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Nov 1;25(21):2872-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22417298
   |texte=   Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22417298" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021