Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer.

Identifieur interne : 001D92 ( PubMed/Corpus ); précédent : 001D91; suivant : 001D93

Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer.

Auteurs : Jyoti K. Jha ; Gaëlle Demarre ; Tatiana Venkova-Canova ; Dhruba K. Chattoraj

Source :

RBID : pubmed:22447451

English descriptors

Abstract

The origin region of Vibrio cholerae chromosome II (chrII) resembles plasmid origins that have repeated initiator-binding sites (iterons). Iterons are essential for initiation as well as preventing over-initiation of plasmid replication. In chrII, iterons are also essential for initiation but over-initiation is prevented by sites called 39-mers. Both iterons and 39-mers are binding sites of the chrII specific initiator, RctB. Here, we have isolated RctB mutants that permit over-initiation in the presence of 39-mers. Characterization of two of the mutants showed that both are defective in 39-mer binding, which helps to explain their over-initiation phenotype. In vitro, RctB bound to 39-mers as monomers, and to iterons as both monomers and dimers. Monomer binding to iterons increased in both the mutants, suggesting that monomers are likely to be the initiators. We suggest that dimers might be competitive inhibitors of monomer binding to iterons and thus help control replication negatively. ChrII replication was found to be dependent on chaperones DnaJ and DnaK in vivo. The chaperones preferentially improved dimer binding in vitro, further suggesting the importance of dimer binding in the control of chrII replication.

DOI: 10.1093/nar/gks260
PubMed: 22447451

Links to Exploration step

pubmed:22447451

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer.</title>
<author>
<name sortKey="Jha, Jyoti K" sort="Jha, Jyoti K" uniqKey="Jha J" first="Jyoti K" last="Jha">Jyoti K. Jha</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, NCI, 37 Convent Drive, NIH, Bethesda, MD 20892-4260, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Demarre, Gaelle" sort="Demarre, Gaelle" uniqKey="Demarre G" first="Gaëlle" last="Demarre">Gaëlle Demarre</name>
</author>
<author>
<name sortKey="Venkova Canova, Tatiana" sort="Venkova Canova, Tatiana" uniqKey="Venkova Canova T" first="Tatiana" last="Venkova-Canova">Tatiana Venkova-Canova</name>
</author>
<author>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22447451</idno>
<idno type="pmid">22447451</idno>
<idno type="doi">10.1093/nar/gks260</idno>
<idno type="wicri:Area/PubMed/Corpus">001D92</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer.</title>
<author>
<name sortKey="Jha, Jyoti K" sort="Jha, Jyoti K" uniqKey="Jha J" first="Jyoti K" last="Jha">Jyoti K. Jha</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, NCI, 37 Convent Drive, NIH, Bethesda, MD 20892-4260, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Demarre, Gaelle" sort="Demarre, Gaelle" uniqKey="Demarre G" first="Gaëlle" last="Demarre">Gaëlle Demarre</name>
</author>
<author>
<name sortKey="Venkova Canova, Tatiana" sort="Venkova Canova, Tatiana" uniqKey="Venkova Canova T" first="Tatiana" last="Venkova-Canova">Tatiana Venkova-Canova</name>
</author>
<author>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Binding Sites</term>
<term>Chromosomes, Bacterial (chemistry)</term>
<term>Chromosomes, Bacterial (metabolism)</term>
<term>DNA Replication</term>
<term>DNA, Bacterial (chemistry)</term>
<term>DNA, Bacterial (metabolism)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Dimerization</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Replication Origin</term>
<term>Vibrio cholerae (genetics)</term>
<term>Vibrio cholerae (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA, Bacterial</term>
<term>DNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA, Bacterial</term>
<term>DNA-Binding Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Chromosomes, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chromosomes, Bacterial</term>
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>DNA Replication</term>
<term>Dimerization</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Replication Origin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The origin region of Vibrio cholerae chromosome II (chrII) resembles plasmid origins that have repeated initiator-binding sites (iterons). Iterons are essential for initiation as well as preventing over-initiation of plasmid replication. In chrII, iterons are also essential for initiation but over-initiation is prevented by sites called 39-mers. Both iterons and 39-mers are binding sites of the chrII specific initiator, RctB. Here, we have isolated RctB mutants that permit over-initiation in the presence of 39-mers. Characterization of two of the mutants showed that both are defective in 39-mer binding, which helps to explain their over-initiation phenotype. In vitro, RctB bound to 39-mers as monomers, and to iterons as both monomers and dimers. Monomer binding to iterons increased in both the mutants, suggesting that monomers are likely to be the initiators. We suggest that dimers might be competitive inhibitors of monomer binding to iterons and thus help control replication negatively. ChrII replication was found to be dependent on chaperones DnaJ and DnaK in vivo. The chaperones preferentially improved dimer binding in vitro, further suggesting the importance of dimer binding in the control of chrII replication.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22447451</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer.</ArticleTitle>
<Pagination>
<MedlinePgn>6026-38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gks260</ELocationID>
<Abstract>
<AbstractText>The origin region of Vibrio cholerae chromosome II (chrII) resembles plasmid origins that have repeated initiator-binding sites (iterons). Iterons are essential for initiation as well as preventing over-initiation of plasmid replication. In chrII, iterons are also essential for initiation but over-initiation is prevented by sites called 39-mers. Both iterons and 39-mers are binding sites of the chrII specific initiator, RctB. Here, we have isolated RctB mutants that permit over-initiation in the presence of 39-mers. Characterization of two of the mutants showed that both are defective in 39-mer binding, which helps to explain their over-initiation phenotype. In vitro, RctB bound to 39-mers as monomers, and to iterons as both monomers and dimers. Monomer binding to iterons increased in both the mutants, suggesting that monomers are likely to be the initiators. We suggest that dimers might be competitive inhibitors of monomer binding to iterons and thus help control replication negatively. ChrII replication was found to be dependent on chaperones DnaJ and DnaK in vivo. The chaperones preferentially improved dimer binding in vitro, further suggesting the importance of dimer binding in the control of chrII replication.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jha</LastName>
<ForeName>Jyoti K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Molecular Biology, NCI, 37 Convent Drive, NIH, Bethesda, MD 20892-4260, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Demarre</LastName>
<ForeName>Gaëlle</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Venkova-Canova</LastName>
<ForeName>Tatiana</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chattoraj</LastName>
<ForeName>Dhruba K</ForeName>
<Initials>DK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002876" MajorTopicYN="N">Chromosomes, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018741" MajorTopicYN="Y">Replication Origin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014734" MajorTopicYN="N">Vibrio cholerae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22447451</ArticleId>
<ArticleId IdType="pii">gks260</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gks260</ArticleId>
<ArticleId IdType="pmc">PMC3401445</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):4901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Oct 16;164(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7590295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Jan;55(1):175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15612926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(2):752-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Nov;187(21):7167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2006 Jan;55(1):1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jul;61(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12051-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Sep;188(17):6419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 11;26(13):3124-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Feb;9(2):151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Mar;8(3):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May;6(5):e1000939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jul;7(7):e1002189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2011;65:19-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21639790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Oct;82(2):475-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21895796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 13;478(7368):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2012 Mar;67(2):102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22248922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Aug;37(3):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 3;406(6795):477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2001 Dec;147(Pt 12):3241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 10;277(19):16705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Aug 22;114(4):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2004 Sep;52(2):69-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15336485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 24;279(39):41058-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Nov;54(3):836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1980;179(3):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6449651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Oct;83(20):7638-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3020552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;53(1):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3596251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Mar;170(3):1380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3277954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Sep 23;54(7):915-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2843291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Aug;8(8):2393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2529119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Dec 21;85(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2533576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Feb;173(3):1064-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1991708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1896443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jan 10;255(5041):203-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1553548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Sep;174(17):5597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1512194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Jun;175(11):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8501058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3839-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8170998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1993;58:383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7956052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Oct;26(1):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383200</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22447451
   |texte=   Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22447451" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021