Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response.

Identifieur interne : 001D66 ( PubMed/Corpus ); précédent : 001D65; suivant : 001D67

Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response.

Auteurs : Guido Hansen ; Rolf Hilgenfeld

Source :

RBID : pubmed:22806565

English descriptors

Abstract

Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.

DOI: 10.1007/s00018-012-1076-4
PubMed: 22806565

Links to Exploration step

pubmed:22806565

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response.</title>
<author>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
<affiliation>
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538, Lübeck, Germany. hansen@biochem.uni-luebeck.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:22806565</idno>
<idno type="pmid">22806565</idno>
<idno type="doi">10.1007/s00018-012-1076-4</idno>
<idno type="wicri:Area/PubMed/Corpus">001D66</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response.</title>
<author>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
<affiliation>
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538, Lübeck, Germany. hansen@biochem.uni-luebeck.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
</analytic>
<series>
<title level="j">Cellular and molecular life sciences : CMLS</title>
<idno type="eISSN">1420-9071</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Bacteria (chemistry)</term>
<term>Bacteria (metabolism)</term>
<term>Escherichia coli Proteins (chemistry)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Heat-Shock Proteins (chemistry)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>High-Temperature Requirement A Serine Peptidase 1</term>
<term>High-Temperature Requirement A Serine Peptidase 2</term>
<term>Humans</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Models, Molecular</term>
<term>PDZ Domains</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Periplasmic Proteins (chemistry)</term>
<term>Periplasmic Proteins (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (chemistry)</term>
<term>Plants (metabolism)</term>
<term>Protein Folding</term>
<term>Serine Endopeptidases (chemistry)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Peptide Hydrolases</term>
<term>Periplasmic Proteins</term>
<term>Plant Proteins</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Heat-Shock Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Peptide Hydrolases</term>
<term>Periplasmic Proteins</term>
<term>Plant Proteins</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Bacteria</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>High-Temperature Requirement A Serine Peptidase 1</term>
<term>High-Temperature Requirement A Serine Peptidase 2</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>PDZ Domains</term>
<term>Protein Folding</term>
<term>Stress, Physiological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22806565</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>70</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Cellular and molecular life sciences : CMLS</Title>
<ISOAbbreviation>Cell. Mol. Life Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response.</ArticleTitle>
<Pagination>
<MedlinePgn>761-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00018-012-1076-4</ELocationID>
<Abstract>
<AbstractText>Protein quality control is vital for all living cells and sophisticated molecular mechanisms have evolved to prevent the excessive accumulation of unfolded proteins. High-temperature requirement A (HtrA) proteases have been identified as important ATP-independent quality-control factors in most species. HtrA proteins harbor a serine-protease domain and at least one peptide-binding PDZ domain to ensure efficient removal of misfolded or damaged proteins. One distinctive property of HtrAs is their ability to assemble into complex oligomers. Whereas all examined HtrAs are capable of forming pyramidal 3-mers, higher-order complexes consisting of up to 24 molecules have been reported. Tight control of chaperone and protease function is of pivotal importance in preventing deleterious HtrA-protease activity. In recent years, structural biology provided detailed insights into the molecular basis of the regulatory mechanisms, which include unique intramolecular allosteric signaling cascades and the dynamic switching of oligomeric states of HtrA proteins. Based on these results, functional models for many family members have been developed. The HtrA protein family represents a remarkable example of how structural and functional diversity is attained from the assembly of simple molecular building blocks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hansen</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538, Lübeck, Germany. hansen@biochem.uni-luebeck.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hilgenfeld</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cell Mol Life Sci</MedlineTA>
<NlmUniqueID>9705402</NlmUniqueID>
<ISSNLinking>1420-682X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033903">Periplasmic Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C489349">degS protein, Escherichia coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C520844">Deg1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C061682">DegP protease</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C098059">DegQ protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D000074289">High-Temperature Requirement A Serine Peptidase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C474012">HtrA1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.108</RegistryNumber>
<NameOfSubstance UI="D000074923">High-Temperature Requirement A Serine Peptidase 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074289" MajorTopicYN="N">High-Temperature Requirement A Serine Peptidase 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074923" MajorTopicYN="N">High-Temperature Requirement A Serine Peptidase 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054731" MajorTopicYN="N">PDZ Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033903" MajorTopicYN="N">Periplasmic Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22806565</ArticleId>
<ArticleId IdType="doi">10.1007/s00018-012-1076-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Proteomics. 2008 May;7(5):875-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18174153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Oct;74(2):315-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15855271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2012 Jan 15;19(2):152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22245966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Jan;74(1):765-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Jul;17(7):844-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18697939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2011 Dec 15;516(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22027029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Oct 15;21(20):2659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2008 Nov 22;372(9652):1835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19027484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Sep 22;163(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7557477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Cancer Drug Targets. 2009 Jun;9(4):451-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Mar;12(3):152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21326199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 21;278(8):6543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12458220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2010 Aug;1(8):737-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 29;285(44):34039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 2;286(35):30680-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2008 Dec;58(12):3644-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19035508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2005 Feb 15;94(3):470-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15534875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Sep;81(6):1542-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21801240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Nov 11;16(21):10053-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3057437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jul 2;569(1-3):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 30;97(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4858-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19255437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2009 Nov;160(9):704-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Sep;267(18):5699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10971580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 10;281(10):6124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cells. 2006 Aug;24(8):1946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Apr 4;113(1):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1999 Aug;67(8):3998-4007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Aug;71(8):4241-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 5;278(49):49417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Nov 2;131(3):572-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jun 10;47(23):6092-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Commun Signal. 2010 May 28;8:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20509869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Dec 17;294(5):1363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2004 Dec;72(12):7357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2009 Nov;160(9):726-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Feb;189(3):706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Apr 18;26(8):2192-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17396155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2003;50(4):985-1017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Mar;131(5):1041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 21;282(38):28285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Mar 21;377(2):410-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2005 May 31;38(3):266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15943900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20207970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 8;109(19):7263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Aug 15;16(16):2156-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2010 Sep;8(9):1248-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):455-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 28;278(48):48099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2011 Sep 23;18(9):1143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Aug 1;14(15):2099-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2011 Sep 7;19(9):1328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21893291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Jun;9(6):436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 30;6(9):e239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18828675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Jun;18(6):728-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21532594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Mar;18(3):386-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21297635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Jun;56(5):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Feb 1;17(3):359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12569127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7702-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 May;52(3):613-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Oct;73(10):6923-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2008 Mar;15(3):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18174901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Feb;178(4):1146-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8576051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2009 Oct 14;17(10):1411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19836340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 12;453(7197):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18496527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 28;282(52):37710-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Oct;178(20):5925-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2010 Apr;20(2):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Apr 9;397(4):957-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bone. 2005 Sep;37(3):323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15993670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Apr 23;360(17):1729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2010 Oct;11(10):798-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20814423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Jan;73(1):459-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tuberculosis (Edinb). 2002;82(2-3):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12356459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2008 Oct-Dec;98(1-3):609-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18709440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 31;283(44):30010-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Sep;262(2):342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 7;278(10):8501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12493751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Apr 1;145(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21458668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2008 Sep;15(9):1408-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2007 Apr;75(4):1679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22806565
   |texte=   Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22806565" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021