Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

Identifieur interne : 001D43 ( PubMed/Corpus ); précédent : 001D42; suivant : 001D44

Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

Auteurs : Yaron Orenstein ; Chaim Linhart ; Ron Shamir

Source :

RBID : pubmed:23029415

English descriptors

Abstract

The new technology of protein binding microarrays (PBMs) allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

DOI: 10.1371/journal.pone.0046145
PubMed: 23029415

Links to Exploration step

pubmed:23029415

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.</title>
<author>
<name sortKey="Orenstein, Yaron" sort="Orenstein, Yaron" uniqKey="Orenstein Y" first="Yaron" last="Orenstein">Yaron Orenstein</name>
<affiliation>
<nlm:affiliation>Blavatnik School of Computer Science, Tel-Aviv University, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Linhart, Chaim" sort="Linhart, Chaim" uniqKey="Linhart C" first="Chaim" last="Linhart">Chaim Linhart</name>
</author>
<author>
<name sortKey="Shamir, Ron" sort="Shamir, Ron" uniqKey="Shamir R" first="Ron" last="Shamir">Ron Shamir</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23029415</idno>
<idno type="pmid">23029415</idno>
<idno type="doi">10.1371/journal.pone.0046145</idno>
<idno type="wicri:Area/PubMed/Corpus">001D43</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.</title>
<author>
<name sortKey="Orenstein, Yaron" sort="Orenstein, Yaron" uniqKey="Orenstein Y" first="Yaron" last="Orenstein">Yaron Orenstein</name>
<affiliation>
<nlm:affiliation>Blavatnik School of Computer Science, Tel-Aviv University, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Linhart, Chaim" sort="Linhart, Chaim" uniqKey="Linhart C" first="Chaim" last="Linhart">Chaim Linhart</name>
</author>
<author>
<name sortKey="Shamir, Ron" sort="Shamir, Ron" uniqKey="Shamir R" first="Ron" last="Shamir">Ron Shamir</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>DNA Probes (chemistry)</term>
<term>DNA Probes (metabolism)</term>
<term>Mice</term>
<term>Protein Array Analysis (methods)</term>
<term>Protein Binding</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA Probes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Probes</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Protein Array Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Mice</term>
<term>Protein Binding</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The new technology of protein binding microarrays (PBMs) allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23029415</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.</ArticleTitle>
<Pagination>
<MedlinePgn>e46145</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0046145</ELocationID>
<Abstract>
<AbstractText>The new technology of protein binding microarrays (PBMs) allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Orenstein</LastName>
<ForeName>Yaron</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Blavatnik School of Computer Science, Tel-Aviv University, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linhart</LastName>
<ForeName>Chaim</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shamir</LastName>
<ForeName>Ron</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015342">DNA Probes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="Y">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015342" MajorTopicYN="N">DNA Probes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040081" MajorTopicYN="N">Protein Array Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23029415</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0046145</ArticleId>
<ArticleId IdType="pii">PONE-D-12-21970</ArticleId>
<ArticleId IdType="pmc">PMC3460961</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 8;316(5830):1497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jul 1;23(13):i72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D77-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(12):R125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22189060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Apr 1;443(1):39-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22181698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2006 Apr 06;1:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010;6(9). pii: e1000916. doi: 10.1371/journal.pcbi.1000916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Surv. 2010;4:1-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20414472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8 Suppl 7:S21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Cell Biol. 2004 Sep;Chapter 17:Unit 17.7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18228445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Jan;23(1):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jun;29(6):483-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21654663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2006 May 19;1:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16722558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Apr;19(4):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jun;29(6):480-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21654662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1603-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21543443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jul;18(7):1180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18411406</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23029415
   |texte=   Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23029415" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021