Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overlapping ETS and CRE Motifs ((G/C)CGGAAGTGACGTCA) preferentially bound by GABPα and CREB proteins.

Identifieur interne : 001D41 ( PubMed/Corpus ); précédent : 001D40; suivant : 001D42

Overlapping ETS and CRE Motifs ((G/C)CGGAAGTGACGTCA) preferentially bound by GABPα and CREB proteins.

Auteurs : Raghunath Chatterjee ; Jianfei Zhao ; Ximiao He ; Andrey Shlyakhtenko ; Ishminder Mann ; Joshua J. Waterfall ; Paul Meltzer ; B K Sathyanarayana ; Peter C. Fitzgerald ; Charles Vinson

Source :

RBID : pubmed:23050235

English descriptors

Abstract

Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X(4)-N(1-30)-X(4)) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif ((C/G)CCGGAAGCGGAA) and the ETS⇔CRE motif ((C/G)CGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif.

DOI: 10.1534/g3.112.004002
PubMed: 23050235

Links to Exploration step

pubmed:23050235

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overlapping ETS and CRE Motifs ((G/C)CGGAAGTGACGTCA) preferentially bound by GABPα and CREB proteins.</title>
<author>
<name sortKey="Chatterjee, Raghunath" sort="Chatterjee, Raghunath" uniqKey="Chatterjee R" first="Raghunath" last="Chatterjee">Raghunath Chatterjee</name>
<affiliation>
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jianfei" sort="Zhao, Jianfei" uniqKey="Zhao J" first="Jianfei" last="Zhao">Jianfei Zhao</name>
</author>
<author>
<name sortKey="He, Ximiao" sort="He, Ximiao" uniqKey="He X" first="Ximiao" last="He">Ximiao He</name>
</author>
<author>
<name sortKey="Shlyakhtenko, Andrey" sort="Shlyakhtenko, Andrey" uniqKey="Shlyakhtenko A" first="Andrey" last="Shlyakhtenko">Andrey Shlyakhtenko</name>
</author>
<author>
<name sortKey="Mann, Ishminder" sort="Mann, Ishminder" uniqKey="Mann I" first="Ishminder" last="Mann">Ishminder Mann</name>
</author>
<author>
<name sortKey="Waterfall, Joshua J" sort="Waterfall, Joshua J" uniqKey="Waterfall J" first="Joshua J" last="Waterfall">Joshua J. Waterfall</name>
</author>
<author>
<name sortKey="Meltzer, Paul" sort="Meltzer, Paul" uniqKey="Meltzer P" first="Paul" last="Meltzer">Paul Meltzer</name>
</author>
<author>
<name sortKey="Sathyanarayana, B K" sort="Sathyanarayana, B K" uniqKey="Sathyanarayana B" first="B K" last="Sathyanarayana">B K Sathyanarayana</name>
</author>
<author>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
</author>
<author>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23050235</idno>
<idno type="pmid">23050235</idno>
<idno type="doi">10.1534/g3.112.004002</idno>
<idno type="wicri:Area/PubMed/Corpus">001D41</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overlapping ETS and CRE Motifs ((G/C)CGGAAGTGACGTCA) preferentially bound by GABPα and CREB proteins.</title>
<author>
<name sortKey="Chatterjee, Raghunath" sort="Chatterjee, Raghunath" uniqKey="Chatterjee R" first="Raghunath" last="Chatterjee">Raghunath Chatterjee</name>
<affiliation>
<nlm:affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jianfei" sort="Zhao, Jianfei" uniqKey="Zhao J" first="Jianfei" last="Zhao">Jianfei Zhao</name>
</author>
<author>
<name sortKey="He, Ximiao" sort="He, Ximiao" uniqKey="He X" first="Ximiao" last="He">Ximiao He</name>
</author>
<author>
<name sortKey="Shlyakhtenko, Andrey" sort="Shlyakhtenko, Andrey" uniqKey="Shlyakhtenko A" first="Andrey" last="Shlyakhtenko">Andrey Shlyakhtenko</name>
</author>
<author>
<name sortKey="Mann, Ishminder" sort="Mann, Ishminder" uniqKey="Mann I" first="Ishminder" last="Mann">Ishminder Mann</name>
</author>
<author>
<name sortKey="Waterfall, Joshua J" sort="Waterfall, Joshua J" uniqKey="Waterfall J" first="Joshua J" last="Waterfall">Joshua J. Waterfall</name>
</author>
<author>
<name sortKey="Meltzer, Paul" sort="Meltzer, Paul" uniqKey="Meltzer P" first="Paul" last="Meltzer">Paul Meltzer</name>
</author>
<author>
<name sortKey="Sathyanarayana, B K" sort="Sathyanarayana, B K" uniqKey="Sathyanarayana B" first="B K" last="Sathyanarayana">B K Sathyanarayana</name>
</author>
<author>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
</author>
<author>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Cyclic AMP Response Element-Binding Protein (chemistry)</term>
<term>Cyclic AMP Response Element-Binding Protein (metabolism)</term>
<term>DNA Methylation</term>
<term>GA-Binding Protein Transcription Factor (chemistry)</term>
<term>GA-Binding Protein Transcription Factor (metabolism)</term>
<term>Humans</term>
<term>Mice</term>
<term>Molecular Docking Simulation</term>
<term>Nucleic Acid Conformation</term>
<term>Nucleotide Motifs</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Proto-Oncogene Proteins c-ets (chemistry)</term>
<term>Proto-Oncogene Proteins c-ets (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cyclic AMP Response Element-Binding Protein</term>
<term>GA-Binding Protein Transcription Factor</term>
<term>Proto-Oncogene Proteins c-ets</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Proto-Oncogene Proteins c-ets</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP Response Element-Binding Protein</term>
<term>GA-Binding Protein Transcription Factor</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>DNA Methylation</term>
<term>Humans</term>
<term>Mice</term>
<term>Molecular Docking Simulation</term>
<term>Nucleic Acid Conformation</term>
<term>Nucleotide Motifs</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X(4)-N(1-30)-X(4)) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif ((C/G)CCGGAAGCGGAA) and the ETS⇔CRE motif ((C/G)CGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23050235</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Overlapping ETS and CRE Motifs ((G/C)CGGAAGTGACGTCA) preferentially bound by GABPα and CREB proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>1243-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.112.004002</ELocationID>
<Abstract>
<AbstractText>Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X(4)-N(1-30)-X(4)) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif ((C/G)CCGGAAGCGGAA) and the ETS⇔CRE motif ((C/G)CGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chatterjee</LastName>
<ForeName>Raghunath</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Jianfei</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Ximiao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shlyakhtenko</LastName>
<ForeName>Andrey</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mann</LastName>
<ForeName>Ishminder</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waterfall</LastName>
<ForeName>Joshua J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meltzer</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sathyanarayana</LastName>
<ForeName>B K</ForeName>
<Initials>BK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>FitzGerald</LastName>
<ForeName>Peter C</ForeName>
<Initials>PC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vinson</LastName>
<ForeName>Charles</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017362">Cyclic AMP Response Element-Binding Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051268">GA-Binding Protein Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495661">GABPA protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050783">Proto-Oncogene Proteins c-ets</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017362" MajorTopicYN="N">Cyclic AMP Response Element-Binding Protein</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="N">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051268" MajorTopicYN="N">GA-Binding Protein Transcription Factor</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="Y">Nucleotide Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="Y">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050783" MajorTopicYN="N">Proto-Oncogene Proteins c-ets</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">EMSA</Keyword>
<Keyword MajorTopicYN="N">co-localization</Keyword>
<Keyword MajorTopicYN="N">proximal promoters</Keyword>
<Keyword MajorTopicYN="N">transcription factor binding sites</Keyword>
<Keyword MajorTopicYN="N">transcriptional start site</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23050235</ArticleId>
<ArticleId IdType="doi">10.1534/g3.112.004002</ArticleId>
<ArticleId IdType="pii">GGG_004002</ArticleId>
<ArticleId IdType="pmc">PMC3464117</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2002;3(12):RESEARCH0087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12537576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Mar;40(5):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22187154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:449-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Aug;14(8):1562-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1989 May;3(5):612-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2545524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Nov;13(11):6919-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 May 24;258(5):800-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Sep;17(9):4885-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jan 1;12(1):34-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9420329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Feb;18(2):967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9447994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Feb 13;279(5353):1037-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Cancer Res. 1998;75:1-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9709806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2004 Dec;84(6):929-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Nov 10;23(22):4384-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15510218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Mar 17;434(7031):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15735639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15753290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D108-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jun;38(6):626-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D127-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(7):R53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16827941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 8;316(5830):1497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 3;282(31):22816-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2008 Apr;18(2):236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Nov;26(11):1293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1351-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Dec 12;135(6):1053-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Sep;5(9):829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19160518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Sep;10(9):605-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19668247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2009 Oct;25(10):434-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Jul 7;29(13):2147-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20517297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21059933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(11):140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 May 27;409(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21295585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2011;52:205-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1696-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2011;80:437-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21548782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Jul 8;43(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 10;274(50):35475-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10585419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2000 Apr;30(4):1102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 10;275(45):35242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Dec;8(6):1267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Aug;39(15):e98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21602262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Oct 15;25(20):2147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22012618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Feb;40(4):e31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3576-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23050235
   |texte=   Overlapping ETS and CRE Motifs ((G/C)CGGAAGTGACGTCA) preferentially bound by GABPα and CREB proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23050235" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021