Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced regulatory sequence prediction using gapped k-mer features.

Identifieur interne : 001910 ( PubMed/Corpus ); précédent : 001909; suivant : 001911

Enhanced regulatory sequence prediction using gapped k-mer features.

Auteurs : Mahmoud Ghandi ; Dongwon Lee ; Morteza Mohammad-Noori ; Michael A. Beer

Source :

RBID : pubmed:25033408

English descriptors

Abstract

Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.

DOI: 10.1371/journal.pcbi.1003711
PubMed: 25033408

Links to Exploration step

pubmed:25033408

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced regulatory sequence prediction using gapped k-mer features.</title>
<author>
<name sortKey="Ghandi, Mahmoud" sort="Ghandi, Mahmoud" uniqKey="Ghandi M" first="Mahmoud" last="Ghandi">Mahmoud Ghandi</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dongwon" sort="Lee, Dongwon" uniqKey="Lee D" first="Dongwon" last="Lee">Dongwon Lee</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohammad Noori, Morteza" sort="Mohammad Noori, Morteza" uniqKey="Mohammad Noori M" first="Morteza" last="Mohammad-Noori">Morteza Mohammad-Noori</name>
<affiliation>
<nlm:affiliation>School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran; School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beer, Michael A" sort="Beer, Michael A" uniqKey="Beer M" first="Michael A" last="Beer">Michael A. Beer</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25033408</idno>
<idno type="pmid">25033408</idno>
<idno type="doi">10.1371/journal.pcbi.1003711</idno>
<idno type="wicri:Area/PubMed/Corpus">001910</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001910</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced regulatory sequence prediction using gapped k-mer features.</title>
<author>
<name sortKey="Ghandi, Mahmoud" sort="Ghandi, Mahmoud" uniqKey="Ghandi M" first="Mahmoud" last="Ghandi">Mahmoud Ghandi</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dongwon" sort="Lee, Dongwon" uniqKey="Lee D" first="Dongwon" last="Lee">Dongwon Lee</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohammad Noori, Morteza" sort="Mohammad Noori, Morteza" uniqKey="Mohammad Noori M" first="Morteza" last="Mohammad-Noori">Morteza Mohammad-Noori</name>
<affiliation>
<nlm:affiliation>School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran; School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Beer, Michael A" sort="Beer, Michael A" uniqKey="Beer M" first="Michael A" last="Beer">Michael A. Beer</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Bayes Theorem</term>
<term>Chromatin Immunoprecipitation</term>
<term>Computational Biology (methods)</term>
<term>Models, Genetic</term>
<term>Oligonucleotides (genetics)</term>
<term>Organ Specificity (genetics)</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Support Vector Machine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Organ Specificity</term>
<term>Regulatory Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Bayes Theorem</term>
<term>Chromatin Immunoprecipitation</term>
<term>Models, Genetic</term>
<term>Support Vector Machine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25033408</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced regulatory sequence prediction using gapped k-mer features.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003711</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1003711</ELocationID>
<Abstract>
<AbstractText>Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ghandi</LastName>
<ForeName>Mahmoud</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Dongwon</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohammad-Noori</LastName>
<ForeName>Morteza</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran; School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beer</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HG007348</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS Comput Biol. 2014 Dec;10(12):e1004035</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060388" MajorTopicYN="N">Support Vector Machine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25033408</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1003711</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-13-01373</ArticleId>
<ArticleId IdType="pmc">PMC4102394</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Sep 6;489(7414):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Jan;16(1):16-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10812473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Feb;31(2):126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23354101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010;6(9). pii: e1000916. doi: 10.1371/journal.pcbi.1000916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Mar 1;20(4):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21875935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1696-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 2014 Aug;69(2):469-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics Bioinform. 2011;4(2):22-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21720494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Oct 15;21(20):3940-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jan 17;349(6306):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1987478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Mar 23;128(6):1231-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2010 Jul 8;363(2):166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20647212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Aug;11(8):1404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2001 Apr;33(4):391-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11312108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 9;328(5975):235-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 12;457(7231):854-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19212405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(Web Server issue):W544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23771147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Feb 8;132(3):422-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18237772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Nov;22(11):2290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23019145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2002;:564-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11928508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):95-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Sep 7;337(6099):1190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Apr 16;117(2):185-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1798-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001910 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001910 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25033408
   |texte=   Enhanced regulatory sequence prediction using gapped k-mer features.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25033408" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021