Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

IRBIS: a systematic search for conserved complementarity.

Identifieur interne : 001875 ( PubMed/Corpus ); précédent : 001874; suivant : 001876

IRBIS: a systematic search for conserved complementarity.

Auteurs : Dmitri D. Pervouchine

Source :

RBID : pubmed:25142064

English descriptors

Abstract

IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the "first-fold-then-align" principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA-RNA interactions become possible. In this article, I provide a rigorous description of the method, benchmarking on simulated and real data, and a set of stringent predictions of intramolecular RNA structure in placental mammals, drosophilids, and nematodes. I discuss two particular cases of long-range RNA structures that are likely to have a causal effect on single- and multiple-exon skipping, one in the mammalian gene Dystonin and the other in the insect gene Ca-α1D. In Dystonin, one of the two complementary boxes contains a binding site of Rbfox protein similar to one recently described in Enah gene. I also report that snoRNAs and long noncoding RNAs (lncRNAs) have a high capacity of base-pairing to introns of protein-coding genes, suggesting possible involvement of these transcripts in splicing regulation. I also find that conserved sequences that occur equally likely on both strands of DNA (e.g., transcription factor binding sites) contribute strongly to the false-discovery rate and, therefore, would confound every such analysis. IRBIS is an open-source software that is available at http://genome.crg.es/~dmitri/irbis/.

DOI: 10.1261/rna.045088.114
PubMed: 25142064

Links to Exploration step

pubmed:25142064

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">IRBIS: a systematic search for conserved complementarity.</title>
<author>
<name sortKey="Pervouchine, Dmitri D" sort="Pervouchine, Dmitri D" uniqKey="Pervouchine D" first="Dmitri D" last="Pervouchine">Dmitri D. Pervouchine</name>
<affiliation>
<nlm:affiliation>Centre for Genomic Regulation and UPF, Barcelona 08003, Spain Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia dp@crg.eu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25142064</idno>
<idno type="pmid">25142064</idno>
<idno type="doi">10.1261/rna.045088.114</idno>
<idno type="wicri:Area/PubMed/Corpus">001875</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001875</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">IRBIS: a systematic search for conserved complementarity.</title>
<author>
<name sortKey="Pervouchine, Dmitri D" sort="Pervouchine, Dmitri D" uniqKey="Pervouchine D" first="Dmitri D" last="Pervouchine">Dmitri D. Pervouchine</name>
<affiliation>
<nlm:affiliation>Centre for Genomic Regulation and UPF, Barcelona 08003, Spain Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia dp@crg.eu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="eISSN">1469-9001</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Caenorhabditis elegans (genetics)</term>
<term>Conserved Sequence (genetics)</term>
<term>Drosophila melanogaster (genetics)</term>
<term>Exons (genetics)</term>
<term>Genes (genetics)</term>
<term>Humans</term>
<term>Introns (genetics)</term>
<term>Molecular Sequence Data</term>
<term>RNA Splicing (genetics)</term>
<term>RNA, Small Nucleolar (genetics)</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Small Nucleolar</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Conserved Sequence</term>
<term>Drosophila melanogaster</term>
<term>Exons</term>
<term>Genes</term>
<term>Introns</term>
<term>RNA Splicing</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Software</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the "first-fold-then-align" principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA-RNA interactions become possible. In this article, I provide a rigorous description of the method, benchmarking on simulated and real data, and a set of stringent predictions of intramolecular RNA structure in placental mammals, drosophilids, and nematodes. I discuss two particular cases of long-range RNA structures that are likely to have a causal effect on single- and multiple-exon skipping, one in the mammalian gene Dystonin and the other in the insect gene Ca-α1D. In Dystonin, one of the two complementary boxes contains a binding site of Rbfox protein similar to one recently described in Enah gene. I also report that snoRNAs and long noncoding RNAs (lncRNAs) have a high capacity of base-pairing to introns of protein-coding genes, suggesting possible involvement of these transcripts in splicing regulation. I also find that conserved sequences that occur equally likely on both strands of DNA (e.g., transcription factor binding sites) contribute strongly to the false-discovery rate and, therefore, would confound every such analysis. IRBIS is an open-source software that is available at http://genome.crg.es/~dmitri/irbis/. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25142064</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-9001</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>IRBIS: a systematic search for conserved complementarity.</ArticleTitle>
<Pagination>
<MedlinePgn>1519-31</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1261/rna.045088.114</ELocationID>
<Abstract>
<AbstractText>IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the "first-fold-then-align" principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA-RNA interactions become possible. In this article, I provide a rigorous description of the method, benchmarking on simulated and real data, and a set of stringent predictions of intramolecular RNA structure in placental mammals, drosophilids, and nematodes. I discuss two particular cases of long-range RNA structures that are likely to have a causal effect on single- and multiple-exon skipping, one in the mammalian gene Dystonin and the other in the insect gene Ca-α1D. In Dystonin, one of the two complementary boxes contains a binding site of Rbfox protein similar to one recently described in Enah gene. I also report that snoRNAs and long noncoding RNAs (lncRNAs) have a high capacity of base-pairing to introns of protein-coding genes, suggesting possible involvement of these transcripts in splicing regulation. I also find that conserved sequences that occur equally likely on both strands of DNA (e.g., transcription factor binding sites) contribute strongly to the false-discovery rate and, therefore, would confound every such analysis. IRBIS is an open-source software that is available at http://genome.crg.es/~dmitri/irbis/. </AbstractText>
<CopyrightInformation>© 2014 Pervouchine; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pervouchine</LastName>
<ForeName>Dmitri D</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Centre for Genomic Regulation and UPF, Barcelona 08003, Spain Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia dp@crg.eu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1R01MH090941-01</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 HG004557</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1U54HG004555-01</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1U54HG004557-01</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 MH090941</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 HG004555</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020537">RNA, Small Nucleolar</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005796" MajorTopicYN="N">Genes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012326" MajorTopicYN="N">RNA Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020537" MajorTopicYN="N">RNA, Small Nucleolar</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ca-α1D</Keyword>
<Keyword MajorTopicYN="N">Dystonin</Keyword>
<Keyword MajorTopicYN="N">RNA–RNA interaction</Keyword>
<Keyword MajorTopicYN="N">alternative splicing</Keyword>
<Keyword MajorTopicYN="N">evolutionary conservation</Keyword>
<Keyword MajorTopicYN="N">exon skipping</Keyword>
<Keyword MajorTopicYN="N">lncRNA</Keyword>
<Keyword MajorTopicYN="N">long-range RNA structure</Keyword>
<Keyword MajorTopicYN="N">snoRNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25142064</ArticleId>
<ArticleId IdType="pii">rna.045088.114</ArticleId>
<ArticleId IdType="doi">10.1261/rna.045088.114</ArticleId>
<ArticleId IdType="pmc">PMC4174434</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1994 Mar 4;236(4):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Feb;18(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Apr;2(4):e33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16628248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Immunol. 1993;53:291-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8512037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Apr 13;3(4):e65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17432929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Jun;1764(6):993-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16716778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2012 Feb;18(2):193-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 May 15;22(10):1177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16446276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Inform. 2004;15(2):92-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2010 Apr 1;19(7):1153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a003707. doi: 10.1101/cshperspect.a003707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Sep 30;5:140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15458580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Nov 15;24(22):2657-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Oct 15;25(20):2646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):51-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jan 15;27(2):211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21088024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Mar 15;22(6):762-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):409-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Nov 1;28(21):2738-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2012 Jan;18(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22128342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Dec;20(12):1434-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;342:101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16957370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Oct;10(10):1507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Dec;25(23):10251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16287842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc IEEE Comput Soc Bioinform Conf. 2003;2:159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Mar 1;41(5):3022-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23376932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 5;285(5):2053-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21507242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Aug;37(14):4533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 22;277(8):6682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(8):3676-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22199253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2006 Mar;13(2):267-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W10-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Jun;23(6):1018-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1993 May;16(2):536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8314593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jul 15;27(14):1934-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(1):380-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2010 May 21;5:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Naturae. 2012 Jan;4(1):32-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22708061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1990 Oct;6(4):309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1701685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 21;288(5):911-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 13;311(5758):230-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Sep 15;27(18):2486-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Feb 15;27(4):456-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21134894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001875 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001875 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25142064
   |texte=   IRBIS: a systematic search for conserved complementarity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25142064" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021