Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stochastic precision analysis of 2D cardiac strain estimation in vivo.

Identifieur interne : 001810 ( PubMed/Corpus ); précédent : 001809; suivant : 001811

Stochastic precision analysis of 2D cardiac strain estimation in vivo.

Auteurs : E A Bunting ; J. Provost ; E E Konofagou

Source :

RBID : pubmed:25330746

English descriptors

Abstract

Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs.

DOI: 10.1088/0031-9155/59/22/6841
PubMed: 25330746

Links to Exploration step

pubmed:25330746

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stochastic precision analysis of 2D cardiac strain estimation in vivo.</title>
<author>
<name sortKey="Bunting, E A" sort="Bunting, E A" uniqKey="Bunting E" first="E A" last="Bunting">E A Bunting</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Columbia University, New York, NY, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Provost, J" sort="Provost, J" uniqKey="Provost J" first="J" last="Provost">J. Provost</name>
</author>
<author>
<name sortKey="Konofagou, E E" sort="Konofagou, E E" uniqKey="Konofagou E" first="E E" last="Konofagou">E E Konofagou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25330746</idno>
<idno type="pmid">25330746</idno>
<idno type="doi">10.1088/0031-9155/59/22/6841</idno>
<idno type="wicri:Area/PubMed/Corpus">001810</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001810</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stochastic precision analysis of 2D cardiac strain estimation in vivo.</title>
<author>
<name sortKey="Bunting, E A" sort="Bunting, E A" uniqKey="Bunting E" first="E A" last="Bunting">E A Bunting</name>
<affiliation>
<nlm:affiliation>Department of Biomedical Engineering, Columbia University, New York, NY, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Provost, J" sort="Provost, J" uniqKey="Provost J" first="J" last="Provost">J. Provost</name>
</author>
<author>
<name sortKey="Konofagou, E E" sort="Konofagou, E E" uniqKey="Konofagou E" first="E E" last="Konofagou">E E Konofagou</name>
</author>
</analytic>
<series>
<title level="j">Physics in medicine and biology</title>
<idno type="eISSN">1361-6560</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Echocardiography (methods)</term>
<term>Elasticity Imaging Techniques (methods)</term>
<term>Heart (physiopathology)</term>
<term>Heart Rate</term>
<term>Heart Ventricles (diagnostic imaging)</term>
<term>Humans</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Signal-To-Noise Ratio</term>
<term>Stochastic Processes</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Heart Ventricles</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Echocardiography</term>
<term>Elasticity Imaging Techniques</term>
<term>Image Interpretation, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Heart</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Heart Rate</term>
<term>Humans</term>
<term>Signal-To-Noise Ratio</term>
<term>Stochastic Processes</term>
<term>Stress, Mechanical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25330746</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-6560</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>59</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Physics in medicine and biology</Title>
<ISOAbbreviation>Phys Med Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Stochastic precision analysis of 2D cardiac strain estimation in vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>6841-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0031-9155/59/22/6841</ELocationID>
<Abstract>
<AbstractText>Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bunting</LastName>
<ForeName>E A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Columbia University, New York, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Provost</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Konofagou</LastName>
<ForeName>E E</ForeName>
<Initials>EE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EB006042</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL114358</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01EB006042</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HL114358</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Phys Med Biol</MedlineTA>
<NlmUniqueID>0401220</NlmUniqueID>
<ISSNLinking>0031-9155</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004452" MajorTopicYN="N">Echocardiography</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054459" MajorTopicYN="N">Elasticity Imaging Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006321" MajorTopicYN="N">Heart</DescriptorName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006339" MajorTopicYN="N">Heart Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006352" MajorTopicYN="N">Heart Ventricles</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="Y">diagnostic imaging</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007090" MajorTopicYN="N">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059629" MajorTopicYN="N">Signal-To-Noise Ratio</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013269" MajorTopicYN="Y">Stochastic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="Y">Stress, Mechanical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25330746</ArticleId>
<ArticleId IdType="doi">10.1088/0031-9155/59/22/6841</ArticleId>
<ArticleId IdType="pmc">PMC4241753</ArticleId>
<ArticleId IdType="mid">NIHMS638316</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biomed Sci Instrum. 2000;36:197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10834232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Image Anal. 2001 Mar;5(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrason Imaging. 2000 Jul;22(3):153-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2001 Apr;27(4):481-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jul;48(4):1111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11477770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Feb;49(2):281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11885685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Echocardiogr. 2000 Sep;1(3):154-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2002 Apr;28(4):475-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2003 Aug;29(8):1177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Echocardiogr. 2004 Jul;17(7):788-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2006 Feb 21;113(7):960-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16476850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2006 Nov 21;48(10):2012-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17112991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2007 Jan;33(1):48-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conf Proc IEEE Eng Med Biol Soc. 2005;4:4465-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17281228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cardiol. 2008 Jan 24;123(3):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17477993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Nov;54(11):2233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18051158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Nov;54(11):2246-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18051159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):164-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18244114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(2):87-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18290135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jan;55(1):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasonics. 2009 Jan;49(1):98-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasonics. 2008 Nov;48(6-7):563-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2008 Dec;34(12):1980-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Oct;55(10):2221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2009 Mar;35(3):458-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2009 Aug;35(8):1352-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Med Imaging. 2010 Mar;29(3):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2009 Dec;35(12):2031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Cardiol. 2010 Jan 15;105(2):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20102925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20529710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 2011 Nov;37(11):1893-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21962579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 2011 Nov 21;56(22):L1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22024555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 2012 Feb 21;57(4):1095-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22297208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasonics. 2013 Mar;53(3):782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Echocardiogr. 2013 Apr;26(4):325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):288-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Ultrason (2001). 2011 Jul;38(3):129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27278500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Biomed Eng. 1996 Mar;43(3):259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8682538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 1997;23(9):1427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrasound Med Biol. 1998 Oct;24(8):1183-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9833588</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001810 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001810 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25330746
   |texte=   Stochastic precision analysis of 2D cardiac strain estimation in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25330746" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021