Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages.

Identifieur interne : 001737 ( PubMed/Corpus ); précédent : 001736; suivant : 001738

Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages.

Auteurs : Benjamin Siranosian ; Sudheesha Perera ; Edward Williams ; Chen Ye ; Christopher De Graffenried ; Peter Shank

Source :

RBID : pubmed:27134721

Abstract

Background The genomic sequences of mycobacteriophages, phages infecting mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share little nucleotide similarity, but most of them have been grouped into lettered clusters and further into subclusters. Traditionally, mycobacteriophage genomes are analyzed based on sequence alignment or knowledge of gene content. However, these approaches are computationally expensive and can be ineffective for significantly diverged sequences. As an alternative to alignment-based genome analysis, we evaluated tetranucleotide usage in mycobacteriophage genomes. These methods make it easier to characterize features of the mycobacteriophage population at many scales. Description We computed tetranucleotide usage deviation (TUD), the ratio of observed counts of 4-mers in a genome to the expected count under a null model. TUD values are comparable between members of a phage subcluster and distinct between subclusters. With few exceptions, neighbor joining phylogenetic trees and hierarchical clustering dendrograms constructed using TUD values place phages in a monophyletic clade with members of the same subcluster. Regions in a genome with exceptional TUD values can point to interesting features of genomic architecture. Finally, we found that subcluster B3 mycobacteriophages contain significantly overrepresented 4-mers and 6-mers that are atypical of phage genomes. Conclusions Statistics based on tetranucleotide usage support established clustering of mycobacteriophages and can uncover interesting relationships within and between sequenced phage genomes. These methods are efficient to compute and do not require sequence alignment or knowledge of gene content. The code to download mycobacteriophage genome sequences and reproduce our analysis is freely available at https://github.com/bsiranosian/tango_final.

DOI: 10.12688/f1000research.6077.2
PubMed: 27134721

Links to Exploration step

pubmed:27134721

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages.</title>
<author>
<name sortKey="Siranosian, Benjamin" sort="Siranosian, Benjamin" uniqKey="Siranosian B" first="Benjamin" last="Siranosian">Benjamin Siranosian</name>
<affiliation>
<nlm:affiliation>Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA; Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perera, Sudheesha" sort="Perera, Sudheesha" uniqKey="Perera S" first="Sudheesha" last="Perera">Sudheesha Perera</name>
<affiliation>
<nlm:affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Williams, Edward" sort="Williams, Edward" uniqKey="Williams E" first="Edward" last="Williams">Edward Williams</name>
<affiliation>
<nlm:affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Chen" sort="Ye, Chen" uniqKey="Ye C" first="Chen" last="Ye">Chen Ye</name>
<affiliation>
<nlm:affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graffenried, Christopher" sort="De Graffenried, Christopher" uniqKey="De Graffenried C" first="Christopher" last="De Graffenried">Christopher De Graffenried</name>
<affiliation>
<nlm:affiliation>Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shank, Peter" sort="Shank, Peter" uniqKey="Shank P" first="Peter" last="Shank">Peter Shank</name>
<affiliation>
<nlm:affiliation>Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:27134721</idno>
<idno type="pmid">27134721</idno>
<idno type="doi">10.12688/f1000research.6077.2</idno>
<idno type="wicri:Area/PubMed/Corpus">001737</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001737</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages.</title>
<author>
<name sortKey="Siranosian, Benjamin" sort="Siranosian, Benjamin" uniqKey="Siranosian B" first="Benjamin" last="Siranosian">Benjamin Siranosian</name>
<affiliation>
<nlm:affiliation>Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA; Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perera, Sudheesha" sort="Perera, Sudheesha" uniqKey="Perera S" first="Sudheesha" last="Perera">Sudheesha Perera</name>
<affiliation>
<nlm:affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Williams, Edward" sort="Williams, Edward" uniqKey="Williams E" first="Edward" last="Williams">Edward Williams</name>
<affiliation>
<nlm:affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ye, Chen" sort="Ye, Chen" uniqKey="Ye C" first="Chen" last="Ye">Chen Ye</name>
<affiliation>
<nlm:affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graffenried, Christopher" sort="De Graffenried, Christopher" uniqKey="De Graffenried C" first="Christopher" last="De Graffenried">Christopher De Graffenried</name>
<affiliation>
<nlm:affiliation>Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shank, Peter" sort="Shank, Peter" uniqKey="Shank P" first="Peter" last="Shank">Peter Shank</name>
<affiliation>
<nlm:affiliation>Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">F1000Research</title>
<idno type="ISSN">2046-1402</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background The genomic sequences of mycobacteriophages, phages infecting mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share little nucleotide similarity, but most of them have been grouped into lettered clusters and further into subclusters. Traditionally, mycobacteriophage genomes are analyzed based on sequence alignment or knowledge of gene content. However, these approaches are computationally expensive and can be ineffective for significantly diverged sequences. As an alternative to alignment-based genome analysis, we evaluated tetranucleotide usage in mycobacteriophage genomes. These methods make it easier to characterize features of the mycobacteriophage population at many scales. Description We computed tetranucleotide usage deviation (TUD), the ratio of observed counts of 4-mers in a genome to the expected count under a null model. TUD values are comparable between members of a phage subcluster and distinct between subclusters. With few exceptions, neighbor joining phylogenetic trees and hierarchical clustering dendrograms constructed using TUD values place phages in a monophyletic clade with members of the same subcluster. Regions in a genome with exceptional TUD values can point to interesting features of genomic architecture. Finally, we found that subcluster B3 mycobacteriophages contain significantly overrepresented 4-mers and 6-mers that are atypical of phage genomes. Conclusions Statistics based on tetranucleotide usage support established clustering of mycobacteriophages and can uncover interesting relationships within and between sequenced phage genomes. These methods are efficient to compute and do not require sequence alignment or knowledge of gene content. The code to download mycobacteriophage genome sequences and reproduce our analysis is freely available at https://github.com/bsiranosian/tango_final. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" VersionID="2" VersionDate="2015/10/30" Owner="NLM">
<PMID Version="2">27134721</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2046-1402</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>F1000Research</Title>
<ISOAbbreviation>F1000Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages.</ArticleTitle>
<Pagination>
<MedlinePgn>36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.12688/f1000research.6077.2</ELocationID>
<Abstract>
<AbstractText>Background The genomic sequences of mycobacteriophages, phages infecting mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share little nucleotide similarity, but most of them have been grouped into lettered clusters and further into subclusters. Traditionally, mycobacteriophage genomes are analyzed based on sequence alignment or knowledge of gene content. However, these approaches are computationally expensive and can be ineffective for significantly diverged sequences. As an alternative to alignment-based genome analysis, we evaluated tetranucleotide usage in mycobacteriophage genomes. These methods make it easier to characterize features of the mycobacteriophage population at many scales. Description We computed tetranucleotide usage deviation (TUD), the ratio of observed counts of 4-mers in a genome to the expected count under a null model. TUD values are comparable between members of a phage subcluster and distinct between subclusters. With few exceptions, neighbor joining phylogenetic trees and hierarchical clustering dendrograms constructed using TUD values place phages in a monophyletic clade with members of the same subcluster. Regions in a genome with exceptional TUD values can point to interesting features of genomic architecture. Finally, we found that subcluster B3 mycobacteriophages contain significantly overrepresented 4-mers and 6-mers that are atypical of phage genomes. Conclusions Statistics based on tetranucleotide usage support established clustering of mycobacteriophages and can uncover interesting relationships within and between sequenced phage genomes. These methods are efficient to compute and do not require sequence alignment or knowledge of gene content. The code to download mycobacteriophage genome sequences and reproduce our analysis is freely available at https://github.com/bsiranosian/tango_final. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Siranosian</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA; Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perera</LastName>
<ForeName>Sudheesha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Edward</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Chen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Graffenried</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shank</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>F1000Res</MedlineTA>
<NlmUniqueID>101594320</NlmUniqueID>
<ISSNLinking>2046-1402</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">deviation, genome</Keyword>
<Keyword MajorTopicYN="N">mycobacteriophages, computed</Keyword>
<Keyword MajorTopicYN="N">sequences</Keyword>
<Keyword MajorTopicYN="N">tetranucleotide</Keyword>
<Keyword MajorTopicYN="N">usage</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27134721</ArticleId>
<ArticleId IdType="doi">10.12688/f1000research.6077.2</ArticleId>
<ArticleId IdType="pmc">PMC4841201</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2011 Oct 12;12:395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21991981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 Jan 18;7:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16417644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2000;54:641-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):145-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Mar 20;10(3):e1003953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24651299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2014 Nov;15(6):890-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jun 25;284(5423):2124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10381871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Mar;18(3):404-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Sep;184(17):4891-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Mar 25;20(6):1363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1313968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1973 Jun;114(3):1143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4576399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Sep 6;131(1):153-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8370536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Drug Resist. 2006 Spring;12(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16584300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2002 Jun;61(4):471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1986 Jan;3(1):75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2832688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Mar 16;7:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16542435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Aug;11(8):1404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Jun 15;25(12):2430-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 1995 Jul;11(4):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8541807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jun;186(12):3677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Tuberc Lung Dis. 1999 Mar;3(3):179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1970 Mar;48(3):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2008 Dec;49(3):969-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18793737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2013 Jan 22;8:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23339707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Oct 15;12(20):1756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12401170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1997 Apr;44(4):383-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9089078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):254-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Feb 09;11:80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Mar 19;397(1):119-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Apr 18;113(2):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12705866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Feb 04;5(1):e01051-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001737 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001737 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27134721
   |texte=   Tetranucleotide usage highlights genomic heterogeneity among mycobacteriophages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27134721" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021