Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions.

Identifieur interne : 001690 ( PubMed/Corpus ); précédent : 001689; suivant : 001691

In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions.

Auteurs : Bradley T. Burcar ; Mohsin Jawed ; Hari Shah ; Linda B. Mcgown

Source :

RBID : pubmed:25716919

English descriptors

Abstract

The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios.

DOI: 10.1007/s11084-015-9412-y
PubMed: 25716919

Links to Exploration step

pubmed:25716919

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions.</title>
<author>
<name sortKey="Burcar, Bradley T" sort="Burcar, Bradley T" uniqKey="Burcar B" first="Bradley T" last="Burcar">Bradley T. Burcar</name>
<affiliation>
<nlm:affiliation>New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street Troy, New York, 12180, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jawed, Mohsin" sort="Jawed, Mohsin" uniqKey="Jawed M" first="Mohsin" last="Jawed">Mohsin Jawed</name>
</author>
<author>
<name sortKey="Shah, Hari" sort="Shah, Hari" uniqKey="Shah H" first="Hari" last="Shah">Hari Shah</name>
</author>
<author>
<name sortKey="Mcgown, Linda B" sort="Mcgown, Linda B" uniqKey="Mcgown L" first="Linda B" last="Mcgown">Linda B. Mcgown</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25716919</idno>
<idno type="pmid">25716919</idno>
<idno type="doi">10.1007/s11084-015-9412-y</idno>
<idno type="wicri:Area/PubMed/Corpus">001690</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001690</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions.</title>
<author>
<name sortKey="Burcar, Bradley T" sort="Burcar, Bradley T" uniqKey="Burcar B" first="Bradley T" last="Burcar">Bradley T. Burcar</name>
<affiliation>
<nlm:affiliation>New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street Troy, New York, 12180, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jawed, Mohsin" sort="Jawed, Mohsin" uniqKey="Jawed M" first="Mohsin" last="Jawed">Mohsin Jawed</name>
</author>
<author>
<name sortKey="Shah, Hari" sort="Shah, Hari" uniqKey="Shah H" first="Hari" last="Shah">Hari Shah</name>
</author>
<author>
<name sortKey="Mcgown, Linda B" sort="Mcgown, Linda B" uniqKey="Mcgown L" first="Linda B" last="Mcgown">Linda B. Mcgown</name>
</author>
</analytic>
<series>
<title level="j">Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life</title>
<idno type="eISSN">1573-0875</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bentonite (chemistry)</term>
<term>Catalysis</term>
<term>Evolution, Chemical</term>
<term>Imidazoles (chemistry)</term>
<term>RNA (chemistry)</term>
<term>Ribonucleotides (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bentonite</term>
<term>Imidazoles</term>
<term>RNA</term>
<term>Ribonucleotides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Evolution, Chemical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25716919</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-0875</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>45</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life</Title>
<ISOAbbreviation>Orig Life Evol Biosph</ISOAbbreviation>
</Journal>
<ArticleTitle>In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions.</ArticleTitle>
<Pagination>
<MedlinePgn>31-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11084-015-9412-y</ELocationID>
<Abstract>
<AbstractText>The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Burcar</LastName>
<ForeName>Bradley T</ForeName>
<Initials>BT</Initials>
<AffiliationInfo>
<Affiliation>New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street Troy, New York, 12180, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jawed</LastName>
<ForeName>Mohsin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>Hari</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McGown</LastName>
<ForeName>Linda B</ForeName>
<Initials>LB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Orig Life Evol Biosph</MedlineTA>
<NlmUniqueID>8610391</NlmUniqueID>
<ISSNLinking>0169-6149</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007093">Imidazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012265">Ribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1302-78-9</RegistryNumber>
<NameOfSubstance UI="D001546">Bentonite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7GBN705NH1</RegistryNumber>
<NameOfSubstance UI="C029899">imidazole</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001546" MajorTopicYN="N">Bentonite</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019418" MajorTopicYN="Y">Evolution, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007093" MajorTopicYN="N">Imidazoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012265" MajorTopicYN="N">Ribonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25716919</ArticleId>
<ArticleId IdType="doi">10.1007/s11084-015-9412-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Symp Ser. 2000;(44):217-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12903346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 14;459(7244):239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1983 Dec;35(3 Pt 2):849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6197186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jun 27;89(7):991-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9215619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1986 Nov 21;123(2):127-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2442564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Oct 7;413(4):594-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Jun 30;126(25):7772-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15212513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Nucleic Acid Chem. 2008 Jun;Chapter 10:Unit 10.1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Oct;5(5):525-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Oct;36(17):5482-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18718931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 2002 Aug;32(4):311-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12458736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 1989;19:609-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11538680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Nov;31(1):147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6297745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 2008 Feb;38(1):57-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18008180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 2013 Jun;43(3):247-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 27;284(48):33206-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2014 Apr 14;15(6):879-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24578245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Acad Sci III. 2001 Dec;324(12):1067-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11803805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2005 Nov;Chapter 26:Unit 26.4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18265364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orig Life Evol Biosph. 1985;15:89-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11539614</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001690 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001690 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25716919
   |texte=   In situ imidazole activation of ribonucleotides for abiotic RNA oligomerization reactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25716919" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021