Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.

Identifieur interne : 001183 ( PubMed/Corpus ); précédent : 001182; suivant : 001184

Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.

Auteurs : Berthony Deslouches ; Mary L. Hasek ; Jodi K. Craigo ; Jonathan D. Steckbeck ; Ronald C. Montelaro

Source :

RBID : pubmed:27046192

English descriptors

Abstract

We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P < 0.05). Importantly, WK12 and WR12 displayed similar negligible haemolytic and cytotoxic effects at peptide concentrations up to ten times the MIC or 20 times the minimum bactericidal concentration. Thus, arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides.

DOI: 10.1099/jmm.0.000258
PubMed: 27046192

Links to Exploration step

pubmed:27046192

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.</title>
<author>
<name sortKey="Deslouches, Berthony" sort="Deslouches, Berthony" uniqKey="Deslouches B" first="Berthony" last="Deslouches">Berthony Deslouches</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hasek, Mary L" sort="Hasek, Mary L" uniqKey="Hasek M" first="Mary L" last="Hasek">Mary L. Hasek</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Craigo, Jodi K" sort="Craigo, Jodi K" uniqKey="Craigo J" first="Jodi K" last="Craigo">Jodi K. Craigo</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steckbeck, Jonathan D" sort="Steckbeck, Jonathan D" uniqKey="Steckbeck J" first="Jonathan D" last="Steckbeck">Jonathan D. Steckbeck</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montelaro, Ronald C" sort="Montelaro, Ronald C" uniqKey="Montelaro R" first="Ronald C" last="Montelaro">Ronald C. Montelaro</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27046192</idno>
<idno type="pmid">27046192</idno>
<idno type="doi">10.1099/jmm.0.000258</idno>
<idno type="wicri:Area/PubMed/Corpus">001183</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001183</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.</title>
<author>
<name sortKey="Deslouches, Berthony" sort="Deslouches, Berthony" uniqKey="Deslouches B" first="Berthony" last="Deslouches">Berthony Deslouches</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hasek, Mary L" sort="Hasek, Mary L" uniqKey="Hasek M" first="Mary L" last="Hasek">Mary L. Hasek</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Craigo, Jodi K" sort="Craigo, Jodi K" uniqKey="Craigo J" first="Jodi K" last="Craigo">Jodi K. Craigo</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steckbeck, Jonathan D" sort="Steckbeck, Jonathan D" uniqKey="Steckbeck J" first="Jonathan D" last="Steckbeck">Jonathan D. Steckbeck</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montelaro, Ronald C" sort="Montelaro, Ronald C" uniqKey="Montelaro R" first="Ronald C" last="Montelaro">Ronald C. Montelaro</name>
<affiliation>
<nlm:affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of medical microbiology</title>
<idno type="eISSN">1473-5644</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimicrobial Cationic Peptides (chemistry)</term>
<term>Antimicrobial Cationic Peptides (pharmacology)</term>
<term>Arginine (chemistry)</term>
<term>Drug Resistance, Multiple, Bacterial</term>
<term>Humans</term>
<term>Lysine (chemistry)</term>
<term>Macrophages (drug effects)</term>
<term>Protein Binding</term>
<term>Pseudomonas aeruginosa (drug effects)</term>
<term>Tryptophan (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antimicrobial Cationic Peptides</term>
<term>Arginine</term>
<term>Lysine</term>
<term>Tryptophan</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antimicrobial Cationic Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Macrophages</term>
<term>Pseudomonas aeruginosa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance, Multiple, Bacterial</term>
<term>Humans</term>
<term>Protein Binding</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P < 0.05). Importantly, WK12 and WR12 displayed similar negligible haemolytic and cytotoxic effects at peptide concentrations up to ten times the MIC or 20 times the minimum bactericidal concentration. Thus, arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27046192</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1473-5644</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical microbiology</Title>
<ISOAbbreviation>J. Med. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.</ArticleTitle>
<Pagination>
<MedlinePgn>554-565</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1099/jmm.0.000258</ELocationID>
<Abstract>
<AbstractText>We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P < 0.05). Importantly, WK12 and WR12 displayed similar negligible haemolytic and cytotoxic effects at peptide concentrations up to ten times the MIC or 20 times the minimum bactericidal concentration. Thus, arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deslouches</LastName>
<ForeName>Berthony</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hasek</LastName>
<ForeName>Mary L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Craigo</LastName>
<ForeName>Jodi K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steckbeck</LastName>
<ForeName>Jonathan D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Montelaro</LastName>
<ForeName>Ronald C</ForeName>
<Initials>RC</Initials>
<AffiliationInfo>
<Affiliation>Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DK072506</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Med Microbiol</MedlineTA>
<NlmUniqueID>0224131</NlmUniqueID>
<ISSNLinking>0022-2615</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023181">Antimicrobial Cationic Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8DUH1N11BX</RegistryNumber>
<NameOfSubstance UI="D014364">Tryptophan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>94ZLA3W45F</RegistryNumber>
<NameOfSubstance UI="D001120">Arginine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D023181" MajorTopicYN="N">Antimicrobial Cationic Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001120" MajorTopicYN="N">Arginine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024901" MajorTopicYN="N">Drug Resistance, Multiple, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014364" MajorTopicYN="N">Tryptophan</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27046192</ArticleId>
<ArticleId IdType="doi">10.1099/jmm.0.000258</ArticleId>
<ArticleId IdType="pmc">PMC5042116</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Jul;49(7):2921-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2007 Jul;55(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jan 17;45(2):468-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16401077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2000;55(1):4-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Jun;57(6):2511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23507278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2005;80(5):636-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Oct 28;42(42):12251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14567687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jul 04;487(7405):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22763554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Mar;77(6):3634-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2002;80(5):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12440706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lett Appl Microbiol. 2010 Feb;50(2):211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 1993 Jul;7(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20732216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Nov;41(11):2394-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transpl Infect Dis. 2009 Oct;11(5):405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Biol Ther. 2014 Jan;14(1):11-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tex Heart Inst J. 2006;33(2):107-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16878608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2013 Mar;68(3):492-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Dec 15;95(12):5748-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2014 Dec;27(6):1361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Nov;1838(11):2778-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25058381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Feb 21;1645(2):172-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12573247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Feb 27;290(9):5855-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Oct 20;99(8):2507-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 1999 Jul;44(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10459808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 May;48(5):1526-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2005 Aug;43(8):3807-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2008 Dec 15;47(12):1537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 29;32(2):590-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2015;31(1):404-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25489959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2007 Dec;5(6):951-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D933-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Jan;49(1):316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pept Res. 2000 Nov;56(5):318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11095185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1998 May;123(5):790-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9562607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1798(8):1485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 20;10(4):e0123146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25894612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Res. 2014 May;113(5):1971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2005 May;135(5):1289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15867326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Jul;4(7):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2013 Oct 24;15(5):R161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24286516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr HIV Res. 2012 Mar;10(2):182-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22339124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Feb;59(2):1329-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25421473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Feb;54(2):627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2014 Apr;86(4):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24680473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2010 Jan 4;11(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19899094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Jun;49(6):2322-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunobiology. 2006;211(4):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2012 Mar;18(3):268-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21793988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Sep;1758(9):1215-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16615993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Aug;69(8):5199-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7609094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2001 Oct;1(3):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11871492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e41245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2006 Jun 30;313(1-2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 1998 Dec;56(6):1047-52; discussion 1053-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 2003 Aug;24(8):1099-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2007 May;45(5):1640-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2009 Jan 1;48(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19035777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 2;48(21):4587-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Jun;46(6):2041-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12019137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Jan;1778(1):229-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17961502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Mar;3(3):238-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vivo. 2002 Nov-Dec;16(6):471-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12494891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001183 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001183 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27046192
   |texte=   Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27046192" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021