Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

Identifieur interne : 001139 ( PubMed/Corpus ); précédent : 001138; suivant : 001140

Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

Auteurs : Elizabeth C. Theil ; Takehiko Tosha ; Rabindra K. Behera

Source :

RBID : pubmed:27136423

English descriptors

Abstract

Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.

DOI: 10.1021/ar500469e
PubMed: 27136423

Links to Exploration step

pubmed:27136423

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.</title>
<author>
<name sortKey="Theil, Elizabeth C" sort="Theil, Elizabeth C" uniqKey="Theil E" first="Elizabeth C" last="Theil">Elizabeth C. Theil</name>
<affiliation>
<nlm:affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tosha, Takehiko" sort="Tosha, Takehiko" uniqKey="Tosha T" first="Takehiko" last="Tosha">Takehiko Tosha</name>
<affiliation>
<nlm:affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Behera, Rabindra K" sort="Behera, Rabindra K" uniqKey="Behera R" first="Rabindra K" last="Behera">Rabindra K. Behera</name>
<affiliation>
<nlm:affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27136423</idno>
<idno type="pmid">27136423</idno>
<idno type="doi">10.1021/ar500469e</idno>
<idno type="wicri:Area/PubMed/Corpus">001139</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.</title>
<author>
<name sortKey="Theil, Elizabeth C" sort="Theil, Elizabeth C" uniqKey="Theil E" first="Elizabeth C" last="Theil">Elizabeth C. Theil</name>
<affiliation>
<nlm:affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tosha, Takehiko" sort="Tosha, Takehiko" uniqKey="Tosha T" first="Takehiko" last="Tosha">Takehiko Tosha</name>
<affiliation>
<nlm:affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Behera, Rabindra K" sort="Behera, Rabindra K" uniqKey="Behera R" first="Rabindra K" last="Behera">Rabindra K. Behera</name>
<affiliation>
<nlm:affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Accounts of chemical research</title>
<idno type="eISSN">1520-4898</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>DNA (metabolism)</term>
<term>Ferric Compounds (chemistry)</term>
<term>Ferritins (chemistry)</term>
<term>Ferritins (genetics)</term>
<term>Ferritins (metabolism)</term>
<term>Heme (metabolism)</term>
<term>Humans</term>
<term>Iron (chemistry)</term>
<term>Iron (metabolism)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Oxygen (chemistry)</term>
<term>Oxygen (metabolism)</term>
<term>Protein Structure, Quaternary</term>
<term>RNA, Messenger (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ferric Compounds</term>
<term>Ferritins</term>
<term>Iron</term>
<term>Oxidoreductases</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Ferritins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA</term>
<term>Ferritins</term>
<term>Heme</term>
<term>Iron</term>
<term>Oxidoreductases</term>
<term>Oxygen</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Protein Structure, Quaternary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27136423</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>04</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4898</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Accounts of chemical research</Title>
<ISOAbbreviation>Acc. Chem. Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.</ArticleTitle>
<Pagination>
<MedlinePgn>784-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ar500469e</ELocationID>
<Abstract>
<AbstractText>Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Theil</LastName>
<ForeName>Elizabeth C</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Structural and Molecular Biochemistry, North Carolina State University , Raleigh, North Carolina 27695-7313, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tosha</LastName>
<ForeName>Takehiko</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Structural and Molecular Biochemistry, North Carolina State University , Raleigh, North Carolina 27695-7313, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Behera</LastName>
<ForeName>Rabindra K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Structural and Molecular Biochemistry, North Carolina State University , Raleigh, North Carolina 27695-7313, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NIH-DK20251</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acc Chem Res</MedlineTA>
<NlmUniqueID>0157313</NlmUniqueID>
<ISSNLinking>0001-4842</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>87PZU03K0K</RegistryNumber>
<NameOfSubstance UI="C092844">ferric oxyhydroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-73-2</RegistryNumber>
<NameOfSubstance UI="D005293">Ferritins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27136423</ArticleId>
<ArticleId IdType="doi">10.1021/ar500469e</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27136423
   |texte=   Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27136423" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021