Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Prediction of fine-tuned promoter activity from DNA sequence.

Identifieur interne : 001072 ( PubMed/Corpus ); précédent : 001071; suivant : 001073

Prediction of fine-tuned promoter activity from DNA sequence.

Auteurs : Geoffrey Siwo ; Andrew Rider ; Asako Tan ; Richard Pinapati ; Scott Emrich ; Nitesh Chawla ; Michael Ferdig

Source :

RBID : pubmed:27347373

Abstract

The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring biological systems.

DOI: 10.12688/f1000research.7485.1
PubMed: 27347373

Links to Exploration step

pubmed:27347373

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Prediction of fine-tuned promoter activity from DNA sequence.</title>
<author>
<name sortKey="Siwo, Geoffrey" sort="Siwo, Geoffrey" uniqKey="Siwo G" first="Geoffrey" last="Siwo">Geoffrey Siwo</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA; IBM TJ Watson Research Center, NY, USA; IBM Research-Africa, Johannesberg, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rider, Andrew" sort="Rider, Andrew" uniqKey="Rider A" first="Andrew" last="Rider">Andrew Rider</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tan, Asako" sort="Tan, Asako" uniqKey="Tan A" first="Asako" last="Tan">Asako Tan</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Epicentre, Madison, WI, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pinapati, Richard" sort="Pinapati, Richard" uniqKey="Pinapati R" first="Richard" last="Pinapati">Richard Pinapati</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emrich, Scott" sort="Emrich, Scott" uniqKey="Emrich S" first="Scott" last="Emrich">Scott Emrich</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chawla, Nitesh" sort="Chawla, Nitesh" uniqKey="Chawla N" first="Nitesh" last="Chawla">Nitesh Chawla</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferdig, Michael" sort="Ferdig, Michael" uniqKey="Ferdig M" first="Michael" last="Ferdig">Michael Ferdig</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27347373</idno>
<idno type="pmid">27347373</idno>
<idno type="doi">10.12688/f1000research.7485.1</idno>
<idno type="wicri:Area/PubMed/Corpus">001072</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001072</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Prediction of fine-tuned promoter activity from DNA sequence.</title>
<author>
<name sortKey="Siwo, Geoffrey" sort="Siwo, Geoffrey" uniqKey="Siwo G" first="Geoffrey" last="Siwo">Geoffrey Siwo</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA; IBM TJ Watson Research Center, NY, USA; IBM Research-Africa, Johannesberg, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rider, Andrew" sort="Rider, Andrew" uniqKey="Rider A" first="Andrew" last="Rider">Andrew Rider</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tan, Asako" sort="Tan, Asako" uniqKey="Tan A" first="Asako" last="Tan">Asako Tan</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Epicentre, Madison, WI, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pinapati, Richard" sort="Pinapati, Richard" uniqKey="Pinapati R" first="Richard" last="Pinapati">Richard Pinapati</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emrich, Scott" sort="Emrich, Scott" uniqKey="Emrich S" first="Scott" last="Emrich">Scott Emrich</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chawla, Nitesh" sort="Chawla, Nitesh" uniqKey="Chawla N" first="Nitesh" last="Chawla">Nitesh Chawla</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferdig, Michael" sort="Ferdig, Michael" uniqKey="Ferdig M" first="Michael" last="Ferdig">Michael Ferdig</name>
<affiliation>
<nlm:affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">F1000Research</title>
<idno type="ISSN">2046-1402</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring biological systems. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27347373</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2046-1402</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>F1000Research</Title>
<ISOAbbreviation>F1000Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Prediction of fine-tuned promoter activity from DNA sequence.</ArticleTitle>
<Pagination>
<MedlinePgn>158</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.12688/f1000research.7485.1</ELocationID>
<Abstract>
<AbstractText>The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring biological systems. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Siwo</LastName>
<ForeName>Geoffrey</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA; IBM TJ Watson Research Center, NY, USA; IBM Research-Africa, Johannesberg, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rider</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Asako</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Epicentre, Madison, WI, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pinapati</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Emrich</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chawla</LastName>
<ForeName>Nitesh</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferdig</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM075762</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>F1000Res</MedlineTA>
<NlmUniqueID>101594320</NlmUniqueID>
<ISSNLinking>2046-1402</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA sequence</Keyword>
<Keyword MajorTopicYN="N">DREAM challenges</Keyword>
<Keyword MajorTopicYN="N">Expression prediction</Keyword>
<Keyword MajorTopicYN="N">Gene expression</Keyword>
<Keyword MajorTopicYN="N">Gene regulation</Keyword>
<Keyword MajorTopicYN="N">Machine learning</Keyword>
<Keyword MajorTopicYN="N">Promoter activity</Keyword>
<Keyword MajorTopicYN="N">Transcription modeling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27347373</ArticleId>
<ArticleId IdType="doi">10.12688/f1000research.7485.1</ArticleId>
<ArticleId IdType="pmc">PMC4916984</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22564-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):429-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Transcription. 2011 Mar;2(2):71-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21468232</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2009 Aug 19;97(4):1138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2010 Nov 30;6:435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119629</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2008 Sep 30;6(9):e238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18828674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149679</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1995 Jul 21;250(4):434-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7616566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Jan 8;457(7226):215-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2008 Mar 18;6(3):e65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18351804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2001 Nov 2;107(3):373-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2009 Apr;41(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biol Direct. 2009 Apr 16;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371405</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2012 May 27;44(7):743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2010 Oct;20(10):1361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2009 Apr;41(4):498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2006 Aug 25;126(4):663-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16904174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21828005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2009 Jul;10(7):443-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506578</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2009 Mar;10(3):184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223927</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1986 Oct 20;191(4):659-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3806678</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2001 Jun 15;292(5524):2080-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11408658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Jan 7;295(1):85-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10623510</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Nov;15(11):1192-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849996</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2004 Aug;36(8):900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247917</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jun;39(11):e75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486745</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 15;30(4):e15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842121</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Bioinform Comput Biol. 2007 Apr;5(2B):467-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17636856</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2008 May 8;453(7192):246-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18418379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15534222</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jun;40(11):4988-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22373924</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15201187</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2008 Aug 1;24(15):1731-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2114-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1995 Apr 14;247(5):918-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2009;5:244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225457</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):1915-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2013 Nov;23(11):1928-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1995 Feb 23;373(6516):724-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7854460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1596-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2009 Aug;19(8):1480-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451592</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2009 Feb;19(1):65-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2009 May;27(5):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377462</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Yeast. 1994 Feb;10(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203157</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>F1000Res. 2016 Feb 11;5:158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27347373</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Mar 19;458(7236):362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19092803</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Mar 20;422(6929):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646919</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2009 Aug;25(8):335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2006 Jul;38(7):830-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16783381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736707</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol Struct Dyn. 1995 Oct;13(2):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8579790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2011;12(4):R34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21473766</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2514-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22908247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001072 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001072 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27347373
   |texte=   Prediction of fine-tuned promoter activity from DNA sequence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27347373" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021