Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.

Identifieur interne : 000F66 ( PubMed/Corpus ); précédent : 000F65; suivant : 000F67

Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.

Auteurs : Adeyemi O. Adedeji ; Hilary Lazarus

Source :

RBID : pubmed:27631026

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5'-to-3' direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5' loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5' loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target.

DOI: 10.1128/mSphere.00235-16
PubMed: 27631026

Links to Exploration step

pubmed:27631026

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.</title>
<author>
<name sortKey="Adedeji, Adeyemi O" sort="Adedeji, Adeyemi O" uniqKey="Adedeji A" first="Adeyemi O" last="Adedeji">Adeyemi O. Adedeji</name>
<affiliation>
<nlm:affiliation>Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lazarus, Hilary" sort="Lazarus, Hilary" uniqKey="Lazarus H" first="Hilary" last="Lazarus">Hilary Lazarus</name>
<affiliation>
<nlm:affiliation>Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2016 Sep-Oct</MedlineDate>
</PubDate>
</date>
<idno type="RBID">pubmed:27631026</idno>
<idno type="pmid">27631026</idno>
<idno type="doi">10.1128/mSphere.00235-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000F66</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.</title>
<author>
<name sortKey="Adedeji, Adeyemi O" sort="Adedeji, Adeyemi O" uniqKey="Adedeji A" first="Adeyemi O" last="Adedeji">Adeyemi O. Adedeji</name>
<affiliation>
<nlm:affiliation>Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lazarus, Hilary" sort="Lazarus, Hilary" uniqKey="Lazarus H" first="Hilary" last="Lazarus">Hilary Lazarus</name>
<affiliation>
<nlm:affiliation>Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="ISSN">2379-5042</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5'-to-3' direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5' loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5' loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27631026</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2379-5042</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1</Volume>
<Issue>5</Issue>
<PubDate>
<MedlineDate>2016 Sep-Oct</MedlineDate>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00235-16</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e00235-16</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5'-to-3' direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5' loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5' loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adedeji</LastName>
<ForeName>Adeyemi O</ForeName>
<Initials>AO</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lazarus</LastName>
<ForeName>Hilary</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, Arizona, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ATP hydrolysis</Keyword>
<Keyword MajorTopicYN="N">DNA</Keyword>
<Keyword MajorTopicYN="N">RNA</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="N">helicase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27631026</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00235-16</ArticleId>
<ArticleId IdType="pii">mSphere00235-16</ArticleId>
<ArticleId IdType="pmc">PMC5014916</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 1997 Sep;17(1):100-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2014 Apr;5:58-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24584035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Aug 7;290(32):19403-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26055715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:289-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Jul 5;298(2):258-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12127789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):734-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 May;71(5):3767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9094652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 15;367:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Nov 25;20(22):6075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 5;268(4):2269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Mar;69(3):1720-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7853509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1982;1(8):945-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6329717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Sep;57(6):1664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Nov 17;83(4):655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7585968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Jan 12;24(1):180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Mar 5;267(7):4398-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1537828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Apr 12;272(5259):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8602509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 5;291(5501):121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4894-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 20;276(16):12598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2014 Jun;13(6):761-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 21;5(12):e15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Oct 25;328(2):208-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15464841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2012 Sep;56(9):4718-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Jul 28;11(7):e1005067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26218680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Oct 4;271(40):24449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2000 Jul;6(7):1056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10917600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1992 Jan;6(1):5-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1310794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2013 Oct 1;188(7):882-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24083868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1981;50:233-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6267987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2015 Sep 5;386(9997):995-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26049252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May 02;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Aug 22;26(16):3804-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 May 23;2(5):e459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17520018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Dec 12;289(50):34667-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25320088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:651-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:169-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000F66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27631026
   |texte=   Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27631026" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021