Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic and mechanistic diversity of piRNA 3'-end formation.

Identifieur interne : 000E88 ( PubMed/Corpus ); précédent : 000E87; suivant : 000E89

Genetic and mechanistic diversity of piRNA 3'-end formation.

Auteurs : Rippei Hayashi ; Jakob Schnabl ; Dominik Handler ; Fabio Mohn ; Stefan L. Ameres ; Julius Brennecke

Source :

RBID : pubmed:27851737

English descriptors

Abstract

Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.

DOI: 10.1038/nature20162
PubMed: 27851737

Links to Exploration step

pubmed:27851737

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic and mechanistic diversity of piRNA 3'-end formation.</title>
<author>
<name sortKey="Hayashi, Rippei" sort="Hayashi, Rippei" uniqKey="Hayashi R" first="Rippei" last="Hayashi">Rippei Hayashi</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schnabl, Jakob" sort="Schnabl, Jakob" uniqKey="Schnabl J" first="Jakob" last="Schnabl">Jakob Schnabl</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Handler, Dominik" sort="Handler, Dominik" uniqKey="Handler D" first="Dominik" last="Handler">Dominik Handler</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohn, Fabio" sort="Mohn, Fabio" uniqKey="Mohn F" first="Fabio" last="Mohn">Fabio Mohn</name>
<affiliation>
<nlm:affiliation>current address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ameres, Stefan L" sort="Ameres, Stefan L" uniqKey="Ameres S" first="Stefan L" last="Ameres">Stefan L. Ameres</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brennecke, Julius" sort="Brennecke, Julius" uniqKey="Brennecke J" first="Julius" last="Brennecke">Julius Brennecke</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27851737</idno>
<idno type="pmid">27851737</idno>
<idno type="doi">10.1038/nature20162</idno>
<idno type="wicri:Area/PubMed/Corpus">000E88</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic and mechanistic diversity of piRNA 3'-end formation.</title>
<author>
<name sortKey="Hayashi, Rippei" sort="Hayashi, Rippei" uniqKey="Hayashi R" first="Rippei" last="Hayashi">Rippei Hayashi</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schnabl, Jakob" sort="Schnabl, Jakob" uniqKey="Schnabl J" first="Jakob" last="Schnabl">Jakob Schnabl</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Handler, Dominik" sort="Handler, Dominik" uniqKey="Handler D" first="Dominik" last="Handler">Dominik Handler</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mohn, Fabio" sort="Mohn, Fabio" uniqKey="Mohn F" first="Fabio" last="Mohn">Fabio Mohn</name>
<affiliation>
<nlm:affiliation>current address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ameres, Stefan L" sort="Ameres, Stefan L" uniqKey="Ameres S" first="Stefan L" last="Ameres">Stefan L. Ameres</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brennecke, Julius" sort="Brennecke, Julius" uniqKey="Brennecke J" first="Julius" last="Brennecke">Julius Brennecke</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Argonaute Proteins (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>Drosophila Proteins (deficiency)</term>
<term>Drosophila Proteins (metabolism)</term>
<term>Drosophila melanogaster (enzymology)</term>
<term>Drosophila melanogaster (genetics)</term>
<term>Drosophila melanogaster (metabolism)</term>
<term>Endoribonucleases (deficiency)</term>
<term>Endoribonucleases (metabolism)</term>
<term>Exoribonucleases (deficiency)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Female</term>
<term>Nuclear Proteins (metabolism)</term>
<term>Peptide Initiation Factors (metabolism)</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>RNA, Guide (metabolism)</term>
<term>RNA, Small Interfering (biosynthesis)</term>
<term>RNA, Small Interfering (chemistry)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Drosophila Proteins</term>
<term>Endoribonucleases</term>
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Argonaute Proteins</term>
<term>Drosophila Proteins</term>
<term>Endoribonucleases</term>
<term>Exoribonucleases</term>
<term>Nuclear Proteins</term>
<term>Peptide Initiation Factors</term>
<term>RNA, Guide</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Drosophila melanogaster</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drosophila melanogaster</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Drosophila melanogaster</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>Transcription, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27851737</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>539</Volume>
<Issue>7630</Issue>
<PubDate>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic and mechanistic diversity of piRNA 3'-end formation.</ArticleTitle>
<Pagination>
<MedlinePgn>588-592</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nature20162</ELocationID>
<Abstract>
<AbstractText>Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Hayashi</LastName>
<ForeName>Rippei</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Schnabl</LastName>
<ForeName>Jakob</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Handler</LastName>
<ForeName>Dominik</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohn</LastName>
<ForeName>Fabio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>current address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ameres</LastName>
<ForeName>Stefan L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brennecke</LastName>
<ForeName>Julius</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>338252</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>W 1207</GrantID>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
<Grant>
<GrantID>Y 733</GrantID>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C518392">AGO3 protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060565">Argonaute Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029721">Drosophila Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010448">Peptide Initiation Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017394">RNA, Guide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C436124">aub protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004722">Endoribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C570892">Nbr protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C521347">Zuc protein, Drosophila</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060565" MajorTopicYN="N">Argonaute Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029721" MajorTopicYN="N">Drosophila Proteins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004722" MajorTopicYN="N">Endoribonucleases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010448" MajorTopicYN="N">Peptide Initiation Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012323" MajorTopicYN="N">RNA Processing, Post-Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017394" MajorTopicYN="N">RNA, Guide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27851737</ArticleId>
<ArticleId IdType="doi">10.1038/nature20162</ArticleId>
<ArticleId IdType="pmc">PMC5164936</ArticleId>
<ArticleId IdType="mid">EMS70266</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2009 Jun;6(6):431-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(8):e60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2016 Feb 1;143(3):530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26718004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Apr;40(4):476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18311141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D250-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Mar 23;128(6):1089-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17346786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2015;84:405-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25747396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Feb;10(2):94-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Oct 23;36(2):231-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19800275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2015 Jun;14(3):443-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25754031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 May;8(5):405-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Feb 25;164(5):962-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26919431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 May 15;348(6236):817-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25977554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 16;315(5818):1587-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Nov 22;21(22):1888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22055292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Sep 28;47(6):954-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22902557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jun 5;157(6):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 May 15;348(6236):812-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25977553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Feb 25;164(5):974-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26919432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;772:445-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jul 1;21(13):1603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17606638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2012 Aug;19(8):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22842725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Jul 3;32(13):1869-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23714778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 8;491(7423):279-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Nov 22;21(22):1878-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22055293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):656-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Aug 20;59(4):553-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26212455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Sep 3;59(5):819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26340424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Nov;39(21):e141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21890899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 16;43(6):1015-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jul 17;17(14):1265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Aug 15;29(16):1747-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2015 Feb 10;13(2):e1002061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25668728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2014 Sep 17;4(11):2279-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25236734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Aug 20;59(4):564-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26295961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 8;491(7423):284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 1;23(1):127-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17050570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 30;455(7217):1193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18830242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27851737
   |texte=   Genetic and mechanistic diversity of piRNA 3'-end formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27851737" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021