Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.

Identifieur interne : 000E20 ( PubMed/Corpus ); précédent : 000E19; suivant : 000E21

Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.

Auteurs : Ying Tao ; Mang Shi ; Christina Chommanard ; Krista Queen ; Jing Zhang ; Wanda Markotter ; Ivan V. Kuzmin ; Edward C. Holmes ; Suxiang Tong

Source :

RBID : pubmed:28077633

English descriptors

Abstract

Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5' and 3' ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination "hot spot" in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances.IMPORTANCE Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with Triaenops afer and Hipposideros sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential.

DOI: 10.1128/JVI.01953-16
PubMed: 28077633

Links to Exploration step

pubmed:28077633

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.</title>
<author>
<name sortKey="Tao, Ying" sort="Tao, Ying" uniqKey="Tao Y" first="Ying" last="Tao">Ying Tao</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Mang" sort="Shi, Mang" uniqKey="Shi M" first="Mang" last="Shi">Mang Shi</name>
<affiliation>
<nlm:affiliation>Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chommanard, Christina" sort="Chommanard, Christina" uniqKey="Chommanard C" first="Christina" last="Chommanard">Christina Chommanard</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Queen, Krista" sort="Queen, Krista" uniqKey="Queen K" first="Krista" last="Queen">Krista Queen</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Markotter, Wanda" sort="Markotter, Wanda" uniqKey="Markotter W" first="Wanda" last="Markotter">Wanda Markotter</name>
<affiliation>
<nlm:affiliation>Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuzmin, Ivan V" sort="Kuzmin, Ivan V" uniqKey="Kuzmin I" first="Ivan V" last="Kuzmin">Ivan V. Kuzmin</name>
<affiliation>
<nlm:affiliation>Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Holmes, Edward C" sort="Holmes, Edward C" uniqKey="Holmes E" first="Edward C" last="Holmes">Edward C. Holmes</name>
<affiliation>
<nlm:affiliation>Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tong, Suxiang" sort="Tong, Suxiang" uniqKey="Tong S" first="Suxiang" last="Tong">Suxiang Tong</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA sot1@cdc.gov.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28077633</idno>
<idno type="pmid">28077633</idno>
<idno type="doi">10.1128/JVI.01953-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000E20</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.</title>
<author>
<name sortKey="Tao, Ying" sort="Tao, Ying" uniqKey="Tao Y" first="Ying" last="Tao">Ying Tao</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Mang" sort="Shi, Mang" uniqKey="Shi M" first="Mang" last="Shi">Mang Shi</name>
<affiliation>
<nlm:affiliation>Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chommanard, Christina" sort="Chommanard, Christina" uniqKey="Chommanard C" first="Christina" last="Chommanard">Christina Chommanard</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Queen, Krista" sort="Queen, Krista" uniqKey="Queen K" first="Krista" last="Queen">Krista Queen</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Markotter, Wanda" sort="Markotter, Wanda" uniqKey="Markotter W" first="Wanda" last="Markotter">Wanda Markotter</name>
<affiliation>
<nlm:affiliation>Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuzmin, Ivan V" sort="Kuzmin, Ivan V" uniqKey="Kuzmin I" first="Ivan V" last="Kuzmin">Ivan V. Kuzmin</name>
<affiliation>
<nlm:affiliation>Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Holmes, Edward C" sort="Holmes, Edward C" uniqKey="Holmes E" first="Edward C" last="Holmes">Edward C. Holmes</name>
<affiliation>
<nlm:affiliation>Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tong, Suxiang" sort="Tong, Suxiang" uniqKey="Tong S" first="Suxiang" last="Tong">Suxiang Tong</name>
<affiliation>
<nlm:affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA sot1@cdc.gov.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chiroptera (virology)</term>
<term>Conserved Sequence</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus NL63, Human</term>
<term>Epidemiological Monitoring</term>
<term>Evolution, Molecular</term>
<term>Genetic Variation</term>
<term>Genome, Viral</term>
<term>Kenya (epidemiology)</term>
<term>Phylogeny</term>
<term>Phylogeography</term>
<term>Prevalence</term>
<term>Recombination, Genetic</term>
<term>Respiratory Tract Infections (epidemiology)</term>
<term>Respiratory Tract Infections (veterinary)</term>
<term>Sequence Analysis, DNA</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Kenya</term>
<term>Respiratory Tract Infections</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Respiratory Tract Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Chiroptera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Conserved Sequence</term>
<term>Coronavirus NL63, Human</term>
<term>Epidemiological Monitoring</term>
<term>Evolution, Molecular</term>
<term>Genetic Variation</term>
<term>Genome, Viral</term>
<term>Phylogeny</term>
<term>Phylogeography</term>
<term>Prevalence</term>
<term>Recombination, Genetic</term>
<term>Sequence Analysis, DNA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in
<i>Triaenops</i>
bats and 229E-like viruses circulating in
<i>Hipposideros</i>
bats, with the breakpoint located near 5' and 3' ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination "hot spot" in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances.
<b>IMPORTANCE</b>
Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with
<i>Triaenops afer</i>
and
<i>Hipposideros</i>
sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28077633</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01953-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01953-16</ELocationID>
<Abstract>
<AbstractText>Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in
<i>Triaenops</i>
bats and 229E-like viruses circulating in
<i>Hipposideros</i>
bats, with the breakpoint located near 5' and 3' ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination "hot spot" in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances.
<b>IMPORTANCE</b>
Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with
<i>Triaenops afer</i>
and
<i>Hipposideros</i>
sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Mang</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chommanard</LastName>
<ForeName>Christina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Queen</LastName>
<ForeName>Krista</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Markotter</LastName>
<ForeName>Wanda</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuzmin</LastName>
<ForeName>Ivan V</ForeName>
<Initials>IV</Initials>
<AffiliationInfo>
<Affiliation>Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holmes</LastName>
<ForeName>Edward C</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Suxiang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA sot1@cdc.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002685" MajorTopicYN="N">Chiroptera</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058957" MajorTopicYN="N">Coronavirus NL63, Human</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062665" MajorTopicYN="N">Epidemiological Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007630" MajorTopicYN="N">Kenya</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058974" MajorTopicYN="N">Phylogeography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012141" MajorTopicYN="N">Respiratory Tract Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Africa</Keyword>
<Keyword MajorTopicYN="Y">HCoV-229E</Keyword>
<Keyword MajorTopicYN="Y">HCoV-NL63</Keyword>
<Keyword MajorTopicYN="Y">bats</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">recombination</Keyword>
<Keyword MajorTopicYN="Y">zoonoses</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28077633</ArticleId>
<ArticleId IdType="pii">JVI.01953-16</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01953-16</ArticleId>
<ArticleId IdType="pmc">PMC5309958</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Dec;86(23):12816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22993147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9864-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27528677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Dec 15;364(5):964-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2011 Feb;139(2):216-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20478089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(15):8638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1967 Feb;27(2):209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6018555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2012 Dec;157(12):2349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22833101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11336-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20686038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006 Jan 03;6:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2011 Feb;6(2):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21366416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1978 Oct;15(2):541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">719752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Sep;15(9):1377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Oct;19(10):1697-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vector Borne Zoonotic Dis. 2012 Jun;12 (6):530-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22276674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Dec;89(23):11858-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Nov;185(1):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Jul;167(1):67-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):61-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):1946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jan;73(1):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 6;329(5992):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vector Borne Zoonotic Dis. 2013 Jul;13(7):516-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23473214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 May;94(Pt 5):1028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23364191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:133-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):81-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Mar;15(3):482-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 May;20(5):741-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Oct 25;367(2):428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Mar;19(3):456-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Oct;88(19):11297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25031349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 May;72(5):4508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 Aug;177(2):646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Jan;101:45-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24184128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2015 Jul;160(7):1837-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25913692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2011;81:85-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Nov;85(21):11325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Sep;94(Pt 9):1984-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2012 Feb;44(1):40-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21877208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2770</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2002 Jun;51(3):528-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079649</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28077633
   |texte=   Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28077633" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021