Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods.

Identifieur interne : 000E16 ( PubMed/Corpus ); précédent : 000E15; suivant : 000E17

Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods.

Auteurs : Nikolai I. Lebovka ; Nikolai V. Vygornitskii ; Volodymyr A. Gigiberiya ; Yuri Yu Tarasevich

Source :

RBID : pubmed:28085421

Abstract

The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k-mers (orientation of the k-mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k-mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k-mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, p_{i}, (p_{i}∈[0,p_{j}], where p_{j} is the jamming concentration), lengths of k-mers (k∈[1,12]), and solvent evaporation rates, u. For completely dried films, the spatial distributions of k-mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k-mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k. The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of p_{i}, k, and u.

DOI: 10.1103/PhysRevE.94.062803
PubMed: 28085421

Links to Exploration step

pubmed:28085421

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods.</title>
<author>
<name sortKey="Lebovka, Nikolai I" sort="Lebovka, Nikolai I" uniqKey="Lebovka N" first="Nikolai I" last="Lebovka">Nikolai I. Lebovka</name>
<affiliation>
<nlm:affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142 and Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine, 01033.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vygornitskii, Nikolai V" sort="Vygornitskii, Nikolai V" uniqKey="Vygornitskii N" first="Nikolai V" last="Vygornitskii">Nikolai V. Vygornitskii</name>
<affiliation>
<nlm:affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gigiberiya, Volodymyr A" sort="Gigiberiya, Volodymyr A" uniqKey="Gigiberiya V" first="Volodymyr A" last="Gigiberiya">Volodymyr A. Gigiberiya</name>
<affiliation>
<nlm:affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tarasevich, Yuri Yu" sort="Tarasevich, Yuri Yu" uniqKey="Tarasevich Y" first="Yuri Yu" last="Tarasevich">Yuri Yu Tarasevich</name>
<affiliation>
<nlm:affiliation>Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan, Russia, 414056.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:28085421</idno>
<idno type="pmid">28085421</idno>
<idno type="doi">10.1103/PhysRevE.94.062803</idno>
<idno type="wicri:Area/PubMed/Corpus">000E16</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods.</title>
<author>
<name sortKey="Lebovka, Nikolai I" sort="Lebovka, Nikolai I" uniqKey="Lebovka N" first="Nikolai I" last="Lebovka">Nikolai I. Lebovka</name>
<affiliation>
<nlm:affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142 and Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine, 01033.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vygornitskii, Nikolai V" sort="Vygornitskii, Nikolai V" uniqKey="Vygornitskii N" first="Nikolai V" last="Vygornitskii">Nikolai V. Vygornitskii</name>
<affiliation>
<nlm:affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gigiberiya, Volodymyr A" sort="Gigiberiya, Volodymyr A" uniqKey="Gigiberiya V" first="Volodymyr A" last="Gigiberiya">Volodymyr A. Gigiberiya</name>
<affiliation>
<nlm:affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tarasevich, Yuri Yu" sort="Tarasevich, Yuri Yu" uniqKey="Tarasevich Y" first="Yuri Yu" last="Tarasevich">Yuri Yu Tarasevich</name>
<affiliation>
<nlm:affiliation>Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan, Russia, 414056.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physical review. E</title>
<idno type="eISSN">2470-0053</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k-mers (orientation of the k-mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k-mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k-mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, p_{i}, (p_{i}∈[0,p_{j}], where p_{j} is the jamming concentration), lengths of k-mers (k∈[1,12]), and solvent evaporation rates, u. For completely dried films, the spatial distributions of k-mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k-mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k. The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of p_{i}, k, and u.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28085421</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>07</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2470-0053</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>94</Volume>
<Issue>6-1</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Physical review. E</Title>
<ISOAbbreviation>Phys Rev E</ISOAbbreviation>
</Journal>
<ArticleTitle>Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods.</ArticleTitle>
<Pagination>
<MedlinePgn>062803</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1103/PhysRevE.94.062803</ELocationID>
<Abstract>
<AbstractText>The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k-mers (orientation of the k-mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k-mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k-mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, p_{i}, (p_{i}∈[0,p_{j}], where p_{j} is the jamming concentration), lengths of k-mers (k∈[1,12]), and solvent evaporation rates, u. For completely dried films, the spatial distributions of k-mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k-mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k. The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of p_{i}, k, and u.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lebovka</LastName>
<ForeName>Nikolai I</ForeName>
<Initials>NI</Initials>
<AffiliationInfo>
<Affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142 and Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine, 01033.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vygornitskii</LastName>
<ForeName>Nikolai V</ForeName>
<Initials>NV</Initials>
<AffiliationInfo>
<Affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gigiberiya</LastName>
<ForeName>Volodymyr A</ForeName>
<Initials>VA</Initials>
<AffiliationInfo>
<Affiliation>Department of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tarasevich</LastName>
<ForeName>Yuri Yu</ForeName>
<Initials>YY</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan, Russia, 414056.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Phys Rev E</MedlineTA>
<NlmUniqueID>101676019</NlmUniqueID>
<ISSNLinking>2470-0045</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28085421</ArticleId>
<ArticleId IdType="doi">10.1103/PhysRevE.94.062803</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28085421
   |texte=   Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28085421" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021