Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.

Identifieur interne : 000D24 ( PubMed/Corpus ); précédent : 000D23; suivant : 000D25

Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.

Auteurs : Prinjaporn Teengam ; Weena Siangproh ; Adisorn Tuantranont ; Tirayut Vilaivan ; Orawon Chailapakul ; Charles S. Henry

Source :

RBID : pubmed:28394582

English descriptors

Abstract

The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV), Mycobacterium tuberculosis (MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.

DOI: 10.1021/acs.analchem.7b00255
PubMed: 28394582

Links to Exploration step

pubmed:28394582

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.</title>
<author>
<name sortKey="Teengam, Prinjaporn" sort="Teengam, Prinjaporn" uniqKey="Teengam P" first="Prinjaporn" last="Teengam">Prinjaporn Teengam</name>
</author>
<author>
<name sortKey="Siangproh, Weena" sort="Siangproh, Weena" uniqKey="Siangproh W" first="Weena" last="Siangproh">Weena Siangproh</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Faculty of Science, Srinakharinwirot University , Bangkok, 10110, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuantranont, Adisorn" sort="Tuantranont, Adisorn" uniqKey="Tuantranont A" first="Adisorn" last="Tuantranont">Adisorn Tuantranont</name>
<affiliation>
<nlm:affiliation>Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center , Pathumthani 12120, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vilaivan, Tirayut" sort="Vilaivan, Tirayut" uniqKey="Vilaivan T" first="Tirayut" last="Vilaivan">Tirayut Vilaivan</name>
</author>
<author>
<name sortKey="Chailapakul, Orawon" sort="Chailapakul, Orawon" uniqKey="Chailapakul O" first="Orawon" last="Chailapakul">Orawon Chailapakul</name>
</author>
<author>
<name sortKey="Henry, Charles S" sort="Henry, Charles S" uniqKey="Henry C" first="Charles S" last="Henry">Charles S. Henry</name>
<affiliation>
<nlm:affiliation>Departments of Chemistry and Chemical and Biological Engineering, Colorado State University , Fort Collins, Colorado 80523, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28394582</idno>
<idno type="pmid">28394582</idno>
<idno type="doi">10.1021/acs.analchem.7b00255</idno>
<idno type="wicri:Area/PubMed/Corpus">000D24</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.</title>
<author>
<name sortKey="Teengam, Prinjaporn" sort="Teengam, Prinjaporn" uniqKey="Teengam P" first="Prinjaporn" last="Teengam">Prinjaporn Teengam</name>
</author>
<author>
<name sortKey="Siangproh, Weena" sort="Siangproh, Weena" uniqKey="Siangproh W" first="Weena" last="Siangproh">Weena Siangproh</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Faculty of Science, Srinakharinwirot University , Bangkok, 10110, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tuantranont, Adisorn" sort="Tuantranont, Adisorn" uniqKey="Tuantranont A" first="Adisorn" last="Tuantranont">Adisorn Tuantranont</name>
<affiliation>
<nlm:affiliation>Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center , Pathumthani 12120, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vilaivan, Tirayut" sort="Vilaivan, Tirayut" uniqKey="Vilaivan T" first="Tirayut" last="Vilaivan">Tirayut Vilaivan</name>
</author>
<author>
<name sortKey="Chailapakul, Orawon" sort="Chailapakul, Orawon" uniqKey="Chailapakul O" first="Orawon" last="Chailapakul">Orawon Chailapakul</name>
</author>
<author>
<name sortKey="Henry, Charles S" sort="Henry, Charles S" uniqKey="Henry C" first="Charles S" last="Henry">Charles S. Henry</name>
<affiliation>
<nlm:affiliation>Departments of Chemistry and Chemical and Biological Engineering, Colorado State University , Fort Collins, Colorado 80523, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Colorimetry (methods)</term>
<term>DNA (analysis)</term>
<term>DNA, Bacterial (analysis)</term>
<term>DNA, Viral (analysis)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Limit of Detection</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Mycobacterium tuberculosis (genetics)</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotides (chemistry)</term>
<term>Oligonucleotides (metabolism)</term>
<term>Paper</term>
<term>Papillomaviridae (genetics)</term>
<term>Peptide Nucleic Acids (chemistry)</term>
<term>Silver (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>DNA</term>
<term>DNA, Bacterial</term>
<term>DNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Oligonucleotides</term>
<term>Peptide Nucleic Acids</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Mycobacterium tuberculosis</term>
<term>Papillomaviridae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Colorimetry</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Limit of Detection</term>
<term>Nucleic Acid Hybridization</term>
<term>Paper</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV), Mycobacterium tuberculosis (MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28394582</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-6882</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.</ArticleTitle>
<Pagination>
<MedlinePgn>5428-5435</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.analchem.7b00255</ELocationID>
<Abstract>
<AbstractText>The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV), Mycobacterium tuberculosis (MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Teengam</LastName>
<ForeName>Prinjaporn</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Siangproh</LastName>
<ForeName>Weena</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Faculty of Science, Srinakharinwirot University , Bangkok, 10110, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuantranont</LastName>
<ForeName>Adisorn</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center , Pathumthani 12120, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vilaivan</LastName>
<ForeName>Tirayut</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chailapakul</LastName>
<ForeName>Orawon</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Henry</LastName>
<ForeName>Charles S</ForeName>
<Initials>CS</Initials>
<Identifier Source="ORCID">0000-0002-8671-7728</Identifier>
<AffiliationInfo>
<Affiliation>Departments of Chemistry and Chemical and Biological Engineering, Colorado State University , Fort Collins, Colorado 80523, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020135">Peptide Nucleic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003124" MajorTopicYN="N">Colorimetry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057230" MajorTopicYN="N">Limit of Detection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009169" MajorTopicYN="N">Mycobacterium tuberculosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010209" MajorTopicYN="Y">Paper</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027383" MajorTopicYN="N">Papillomaviridae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020135" MajorTopicYN="N">Peptide Nucleic Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28394582</ArticleId>
<ArticleId IdType="doi">10.1021/acs.analchem.7b00255</ArticleId>
<ArticleId IdType="pmc">PMC7077925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2010 Mar 1;82(5):1727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20121066</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2012 Nov 06;9:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23131123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2007;46(8):1318-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sensors (Basel). 2012;12(9):11505-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23112667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2009 Aug 15;81(16):7091-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20337388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Talanta. 2016;146:318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26695270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Rev. 2003 Jan;16(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12525422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2006 Oct;6(10):664-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17008175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16598-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Bioanal Chem. 2013 Sep;405(24):7573-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23604524</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2008 Sep 15;80(18):7051-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662017</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Commun (Camb). 2004 Apr 7;(7):846-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15045093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1993 Oct 7;365(6446):566-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7692304</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1994 Feb;32(2):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8150935</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1991 Dec 6;254(5037):1497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1962210</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Res Pharm Sci. 2014 Nov-Dec;9(6):385-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26339255</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2011 Mar;49(3):797-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2009 Nov;7(9):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19883330</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2009 Aug 1;81(15):6122-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20337394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Tuberc Lung Dis. 2008 Nov;12(11):1226-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18926032</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2015 Jan 6;87(1):19-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375292</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2014 Apr 1;86(7):3555-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24576180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acc Chem Res. 2015 Jun 16;48(6):1645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26022340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2014 Aug 08;11:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25103205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nanomedicine (Lond). 2008 Apr;3(2):215-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18373427</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lab Chip. 2013 Jun 21;13(12):2210-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2008 Apr 15;80(8):2805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18307361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2012 Jul 9;51(28):6925-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639438</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2012 May 15;84(10):4474-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489881</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Gynaecol Obstet. 2006 Nov;94 Suppl 1:S71-S80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29644640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biosens Bioelectron. 2014 Apr 15;54:428-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24300785</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Pediatr Res. 2010 May;67(5):458-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075759</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Occup Hyg. 2014 May;58(4):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515892</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2011 Nov 9;133(44):17564-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Rev. 2003 Jul;16(3):463-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857778</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Tuberc Lung Dis. 2003 Jun;7(6):569-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12797700</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Chim Acta. 2006 Jan;363(1-2):120-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2014 Jul 22;5(4):e01450-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25053787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chim Acta. 2015 Mar 25;866:75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25732695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Dis Clin North Am. 2005 Jun;19(2):439-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963882</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Talanta. 2012 Aug 15;97:388-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22841097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Apr 09;10(4):e0123126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25856093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Bioanal Chem. 2008 Jun;391(3):943-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18157524</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Electrophoresis. 2015 Aug;36(16):1811-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25820492</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Org Lett. 2006 Apr 27;8(9):1897-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Technol. 2011 Jul 1;45(13):5564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21630686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2008 Oct 13;9(15):2363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18821551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nano Lett. 2007 Jul;7(7):2112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17571909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chim Acta. 2012 Nov 2;751:24-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23084049</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Nano. 2009 Sep 22;3(9):2751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19708641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Langmuir. 2010 Nov 16;26(22):16690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20879768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28394582
   |texte=   Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28394582" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021