Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2.

Identifieur interne : 000D14 ( PubMed/Corpus ); précédent : 000D13; suivant : 000D15

The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2.

Auteurs : Jyoti K. Jha ; Mi Li ; Rodolfo Ghirlando ; Lisa M. Miller Jenkins ; Alexander Wlodawer ; Dhruba Chattoraj

Source :

RBID : pubmed:28420739

English descriptors

Abstract

Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid-the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication of Vibrio cholerae Chr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.

DOI: 10.1128/mBio.00427-17
PubMed: 28420739

Links to Exploration step

pubmed:28420739

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of
<i>Vibrio cholerae</i>
Chromosome 2.</title>
<author>
<name sortKey="Jha, Jyoti K" sort="Jha, Jyoti K" uniqKey="Jha J" first="Jyoti K" last="Jha">Jyoti K. Jha</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Mi" sort="Li, Mi" uniqKey="Li M" first="Mi" last="Li">Mi Li</name>
<affiliation>
<nlm:affiliation>Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghirlando, Rodolfo" sort="Ghirlando, Rodolfo" uniqKey="Ghirlando R" first="Rodolfo" last="Ghirlando">Rodolfo Ghirlando</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller Jenkins, Lisa M" sort="Miller Jenkins, Lisa M" uniqKey="Miller Jenkins L" first="Lisa M" last="Miller Jenkins">Lisa M. Miller Jenkins</name>
<affiliation>
<nlm:affiliation>Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wlodawer, Alexander" sort="Wlodawer, Alexander" uniqKey="Wlodawer A" first="Alexander" last="Wlodawer">Alexander Wlodawer</name>
<affiliation>
<nlm:affiliation>Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chattoraj, Dhruba" sort="Chattoraj, Dhruba" uniqKey="Chattoraj D" first="Dhruba" last="Chattoraj">Dhruba Chattoraj</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA chattoraj@nih.gov.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28420739</idno>
<idno type="pmid">28420739</idno>
<idno type="doi">10.1128/mBio.00427-17</idno>
<idno type="wicri:Area/PubMed/Corpus">000D14</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of
<i>Vibrio cholerae</i>
Chromosome 2.</title>
<author>
<name sortKey="Jha, Jyoti K" sort="Jha, Jyoti K" uniqKey="Jha J" first="Jyoti K" last="Jha">Jyoti K. Jha</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Mi" sort="Li, Mi" uniqKey="Li M" first="Mi" last="Li">Mi Li</name>
<affiliation>
<nlm:affiliation>Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghirlando, Rodolfo" sort="Ghirlando, Rodolfo" uniqKey="Ghirlando R" first="Rodolfo" last="Ghirlando">Rodolfo Ghirlando</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller Jenkins, Lisa M" sort="Miller Jenkins, Lisa M" uniqKey="Miller Jenkins L" first="Lisa M" last="Miller Jenkins">Lisa M. Miller Jenkins</name>
<affiliation>
<nlm:affiliation>Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wlodawer, Alexander" sort="Wlodawer, Alexander" uniqKey="Wlodawer A" first="Alexander" last="Wlodawer">Alexander Wlodawer</name>
<affiliation>
<nlm:affiliation>Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chattoraj, Dhruba" sort="Chattoraj, Dhruba" uniqKey="Chattoraj D" first="Dhruba" last="Chattoraj">Dhruba Chattoraj</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA chattoraj@nih.gov.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Chromosomes, Bacterial (metabolism)</term>
<term>DNA Helicases (metabolism)</term>
<term>DNA Replication</term>
<term>DNA, Bacterial (metabolism)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Replication Origin</term>
<term>Trans-Activators (metabolism)</term>
<term>Vibrio cholerae (enzymology)</term>
<term>Vibrio cholerae (genetics)</term>
<term>Vibrio cholerae (growth & development)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>DNA Helicases</term>
<term>DNA, Bacterial</term>
<term>Molecular Chaperones</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chromosomes, Bacterial</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Replication</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Replication Origin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Replication of
<i>Vibrio cholerae</i>
chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in
<i>rctB</i>
that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid-the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.
<b>IMPORTANCE</b>
The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication of
<i>Vibrio cholerae</i>
Chr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28420739</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of
<i>Vibrio cholerae</i>
Chromosome 2.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00427-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00427-17</ELocationID>
<Abstract>
<AbstractText>Replication of
<i>Vibrio cholerae</i>
chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in
<i>rctB</i>
that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid-the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.
<b>IMPORTANCE</b>
The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication of
<i>Vibrio cholerae</i>
Chr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.</AbstractText>
<CopyrightInformation>Copyright © 2017 Jha et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jha</LastName>
<ForeName>Jyoti K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Mi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghirlando</LastName>
<ForeName>Rodolfo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller Jenkins</LastName>
<ForeName>Lisa M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wlodawer</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chattoraj</LastName>
<ForeName>Dhruba</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA chattoraj@nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C045264">replication initiator protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002876" MajorTopicYN="N">Chromosomes, Bacterial</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018741" MajorTopicYN="N">Replication Origin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014734" MajorTopicYN="N">Vibrio cholerae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA-protein interactions</Keyword>
<Keyword MajorTopicYN="Y">DnaK chaperone</Keyword>
<Keyword MajorTopicYN="Y">Vibrio cholerae</Keyword>
<Keyword MajorTopicYN="Y">chromosome replication</Keyword>
<Keyword MajorTopicYN="Y">initiator remodeling</Keyword>
<Keyword MajorTopicYN="Y">initiator structure</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28420739</ArticleId>
<ArticleId IdType="pii">mBio.00427-17</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00427-17</ArticleId>
<ArticleId IdType="pmc">PMC5395669</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Adv. 2016 Apr 22;2(4):e1501914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27152358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e49589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23166722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 2):1772-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Jul;10(7):565-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(16):10538-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25159619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Aug;170(8):3554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3403509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4938-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11296251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3839-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8170998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1996 Aug;21(2):255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8862810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1984 Dec;48(4):299-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6240590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 25;268(18):13143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8514753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Oct;26(1):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 14;278(46):45476-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Sep 11;392(1):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Nov;54(3):836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2012 Nov;68(3):159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22487081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Aug 1;154(3):623-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23911325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Feb 27;10(2):e1004184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jan 10;255(5041):203-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1553548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jul 1;353(6294):aac4354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27365453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Feb 20;35(7):2268-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8652567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1896443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):44778-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Mol Biosci. 2016 Sep 30;3:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27747216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May 06;6(5):e1000939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18000058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Jun;175(11):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8501058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jul 29;364(6436):412-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Nov 20;192(2):275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3560217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2013 Feb;Chapter 20:Unit20.12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23377850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Oct;86(20):7942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2682632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 May 1;13(9):2089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7910558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12393927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Apr 1;16(7):1501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9130695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2008 Apr;Chapter 20:Unit 20.1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18425763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2002 Nov;110(9):1221-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1979 May;138(2):339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">374384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2016 Nov 30;81(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12051-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 05;6:25425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27147472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Jul 28;6(4):e00973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26220967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Sep 1;18(17):4597-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 16;278(20):18606-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Nov 19;75(4):791-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8242750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 Mar 1;54(4):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14997564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Nov 21;274(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jun;187(11):3779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Dec;102(6):1075-1085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27667502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Aug 11;16(15):7351-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3045756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Sep;188(17):6419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Apr 20;45(7):3724-3737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28031373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(13):6026-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22447451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2004 Sep;52(2):69-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15336485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 13;279(7):6027-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jun 14;272(5268):1606-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8658133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 May 6;77(3):413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8011018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28420739
   |texte=   The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28420739" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021