Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species.

Identifieur interne : 000D07 ( PubMed/Corpus ); précédent : 000D06; suivant : 000D08

Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species.

Auteurs : Courtney M. Daczkowski ; John V. Dzimianski ; Jozlyn R. Clasman ; Octavia Goodwin ; Andrew D. Mesecar ; Scott D. Pegan

Source :

RBID : pubmed:28438633

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) encode multifunctional papain-like proteases (PLPs) that have the ability to process the viral polyprotein to facilitate RNA replication and antagonize the host innate immune response. The latter function involves reversing the post-translational modification of cellular proteins conjugated with either ubiquitin (Ub) or Ub-like interferon-stimulated gene product 15 (ISG15). Ub is known to be highly conserved among eukaryotes, but surprisingly, ISG15 is highly divergent among animals. The ramifications of this sequence divergence to the recognition of ISG15 by coronavirus PLPs at a structural and biochemical level are poorly understood. Therefore, the activity of PLPs from SARS-CoV, MERS-CoV, and mouse hepatitis virus was evaluated against seven ISG15s originating from an assortment of animal species susceptible, and not, to certain coronavirus infections. Excitingly, our kinetic, thermodynamic, and structural analysis revealed an array of different preferences among PLPs. Included in these studies is the first insight into a coronavirus PLP's interface with ISG15 via SARS-CoV PLpro in complex with the principle binding domain of human ISG15 (hISG15) and mouse ISG15s (mISG15s). The first X-ray structure of the full-length mISG15 protein is also reported and highlights a unique, twisted hinge region of ISG15 that is not conserved in hISG15, suggesting a potential role in differential recognition. Taken together, this new information provides a structural and biochemical understanding of the distinct specificities among coronavirus PLPs observed and addresses a critical gap of how PLPs can interact with ISG15s from a wide variety of species.

DOI: 10.1016/j.jmb.2017.04.011
PubMed: 28438633

Links to Exploration step

pubmed:28438633

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species.</title>
<author>
<name sortKey="Daczkowski, Courtney M" sort="Daczkowski, Courtney M" uniqKey="Daczkowski C" first="Courtney M" last="Daczkowski">Courtney M. Daczkowski</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dzimianski, John V" sort="Dzimianski, John V" uniqKey="Dzimianski J" first="John V" last="Dzimianski">John V. Dzimianski</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clasman, Jozlyn R" sort="Clasman, Jozlyn R" uniqKey="Clasman J" first="Jozlyn R" last="Clasman">Jozlyn R. Clasman</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goodwin, Octavia" sort="Goodwin, Octavia" uniqKey="Goodwin O" first="Octavia" last="Goodwin">Octavia Goodwin</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pegan, Scott D" sort="Pegan, Scott D" uniqKey="Pegan S" first="Scott D" last="Pegan">Scott D. Pegan</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA. Electronic address: spegan@uga.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28438633</idno>
<idno type="pmid">28438633</idno>
<idno type="doi">10.1016/j.jmb.2017.04.011</idno>
<idno type="wicri:Area/PubMed/Corpus">000D07</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species.</title>
<author>
<name sortKey="Daczkowski, Courtney M" sort="Daczkowski, Courtney M" uniqKey="Daczkowski C" first="Courtney M" last="Daczkowski">Courtney M. Daczkowski</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dzimianski, John V" sort="Dzimianski, John V" uniqKey="Dzimianski J" first="John V" last="Dzimianski">John V. Dzimianski</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clasman, Jozlyn R" sort="Clasman, Jozlyn R" uniqKey="Clasman J" first="Jozlyn R" last="Clasman">Jozlyn R. Clasman</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goodwin, Octavia" sort="Goodwin, Octavia" uniqKey="Goodwin O" first="Octavia" last="Goodwin">Octavia Goodwin</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pegan, Scott D" sort="Pegan, Scott D" uniqKey="Pegan S" first="Scott D" last="Pegan">Scott D. Pegan</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA. Electronic address: spegan@uga.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Crystallography, X-Ray</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mice</term>
<term>Middle East Respiratory Syndrome Coronavirus (enzymology)</term>
<term>Murine hepatitis virus (enzymology)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>SARS Virus (enzymology)</term>
<term>Ubiquitins (chemistry)</term>
<term>Ubiquitins (metabolism)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Ubiquitins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Ubiquitins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Murine hepatitis virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) encode multifunctional papain-like proteases (PLPs) that have the ability to process the viral polyprotein to facilitate RNA replication and antagonize the host innate immune response. The latter function involves reversing the post-translational modification of cellular proteins conjugated with either ubiquitin (Ub) or Ub-like interferon-stimulated gene product 15 (ISG15). Ub is known to be highly conserved among eukaryotes, but surprisingly, ISG15 is highly divergent among animals. The ramifications of this sequence divergence to the recognition of ISG15 by coronavirus PLPs at a structural and biochemical level are poorly understood. Therefore, the activity of PLPs from SARS-CoV, MERS-CoV, and mouse hepatitis virus was evaluated against seven ISG15s originating from an assortment of animal species susceptible, and not, to certain coronavirus infections. Excitingly, our kinetic, thermodynamic, and structural analysis revealed an array of different preferences among PLPs. Included in these studies is the first insight into a coronavirus PLP's interface with ISG15 via SARS-CoV PLpro in complex with the principle binding domain of human ISG15 (hISG15) and mouse ISG15s (mISG15s). The first X-ray structure of the full-length mISG15 protein is also reported and highlights a unique, twisted hinge region of ISG15 that is not conserved in hISG15, suggesting a potential role in differential recognition. Taken together, this new information provides a structural and biochemical understanding of the distinct specificities among coronavirus PLPs observed and addresses a critical gap of how PLPs can interact with ISG15s from a wide variety of species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28438633</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>429</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species.</ArticleTitle>
<Pagination>
<MedlinePgn>1661-1683</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0022-2836(17)30187-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2017.04.011</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) encode multifunctional papain-like proteases (PLPs) that have the ability to process the viral polyprotein to facilitate RNA replication and antagonize the host innate immune response. The latter function involves reversing the post-translational modification of cellular proteins conjugated with either ubiquitin (Ub) or Ub-like interferon-stimulated gene product 15 (ISG15). Ub is known to be highly conserved among eukaryotes, but surprisingly, ISG15 is highly divergent among animals. The ramifications of this sequence divergence to the recognition of ISG15 by coronavirus PLPs at a structural and biochemical level are poorly understood. Therefore, the activity of PLPs from SARS-CoV, MERS-CoV, and mouse hepatitis virus was evaluated against seven ISG15s originating from an assortment of animal species susceptible, and not, to certain coronavirus infections. Excitingly, our kinetic, thermodynamic, and structural analysis revealed an array of different preferences among PLPs. Included in these studies is the first insight into a coronavirus PLP's interface with ISG15 via SARS-CoV PLpro in complex with the principle binding domain of human ISG15 (hISG15) and mouse ISG15s (mISG15s). The first X-ray structure of the full-length mISG15 protein is also reported and highlights a unique, twisted hinge region of ISG15 that is not conserved in hISG15, suggesting a potential role in differential recognition. Taken together, this new information provides a structural and biochemical understanding of the distinct specificities among coronavirus PLPs observed and addresses a critical gap of how PLPs can interact with ISG15s from a wide variety of species.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daczkowski</LastName>
<ForeName>Courtney M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dzimianski</LastName>
<ForeName>John V</ForeName>
<Initials>JV</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clasman</LastName>
<ForeName>Jozlyn R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goodwin</LastName>
<ForeName>Octavia</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mesecar</LastName>
<ForeName>Andrew D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pegan</LastName>
<ForeName>Scott D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA. Electronic address: spegan@uga.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI085089</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI109008</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 OD021762</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014452">Ubiquitins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.28</RegistryNumber>
<NameOfSubstance UI="C052731">3C proteases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014452" MajorTopicYN="N">Ubiquitins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ISG15</Keyword>
<Keyword MajorTopicYN="Y">Middle East respiratory syndrome</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">severe acute respiratory syndrome</Keyword>
<Keyword MajorTopicYN="Y">ubiquitin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28438633</ArticleId>
<ArticleId IdType="pii">S0022-2836(17)30187-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2017.04.011</ArticleId>
<ArticleId IdType="pmc">PMC5634334</ArticleId>
<ArticleId IdType="mid">NIHMS870279</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13468-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21808041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Oct 1;466(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2016 May 19;7:11496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27193971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):1147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Jul;83(13):6689-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jul 22;280(29):27356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917233</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2016 Mar 18;8(3):84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27102167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 May 22;10(5):e1004113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Aug 26;90(18):8314-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27412597</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 May;89(9):4907-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25694594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2014 Dec 12;289(50):34667-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25320088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Microbiol. 2010 Aug;13(4):508-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2014 Mar 27;57(6):2393-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24568342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Osong Public Health Res Perspect. 2015 Aug;6(4):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26473095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Oct;88(20):11825-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2015 Jun 2;54(21):3360-3369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25946571</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jun;88(11):6195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24648452</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Nov;88(21):12511-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25142582</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2016 May 19;62(4):572-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27203180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1992 Dec;66(12):7420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1279203</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-2315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Mar 12;285(11):7852-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 18;101(20):7578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131269</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28438633
   |texte=   Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28438633" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021