Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The CaMKII holoenzyme structure in activation-competent conformations.

Identifieur interne : 000C67 ( PubMed/Corpus ); précédent : 000C66; suivant : 000C68

The CaMKII holoenzyme structure in activation-competent conformations.

Auteurs : Janette B. Myers ; Vincent Zaegel ; Steven J. Coultrap ; Adam P. Miller ; K Ulrich Bayer ; Steve L. Reichow

Source :

RBID : pubmed:28589927

English descriptors

Abstract

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15-35 nm in diameter. While most kinase domains are ordered independently, ∼20% appear to form dimers and <3% are consistent with a compact conformation. An additional level of plasticity is revealed by a small fraction of bona-fide 14-mers (<4%) that may enable subunit exchange. Biochemical and cellular FRET studies confirm that the extended state of CaMKIIα resolved by EM is the predominant form of the holoenzyme, even under molecular crowding conditions.

DOI: 10.1038/ncomms15742
PubMed: 28589927

Links to Exploration step

pubmed:28589927

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The CaMKII holoenzyme structure in activation-competent conformations.</title>
<author>
<name sortKey="Myers, Janette B" sort="Myers, Janette B" uniqKey="Myers J" first="Janette B" last="Myers">Janette B. Myers</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaegel, Vincent" sort="Zaegel, Vincent" uniqKey="Zaegel V" first="Vincent" last="Zaegel">Vincent Zaegel</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coultrap, Steven J" sort="Coultrap, Steven J" uniqKey="Coultrap S" first="Steven J" last="Coultrap">Steven J. Coultrap</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Adam P" sort="Miller, Adam P" uniqKey="Miller A" first="Adam P" last="Miller">Adam P. Miller</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bayer, K Ulrich" sort="Bayer, K Ulrich" uniqKey="Bayer K" first="K Ulrich" last="Bayer">K Ulrich Bayer</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reichow, Steve L" sort="Reichow, Steve L" uniqKey="Reichow S" first="Steve L" last="Reichow">Steve L. Reichow</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28589927</idno>
<idno type="pmid">28589927</idno>
<idno type="doi">10.1038/ncomms15742</idno>
<idno type="wicri:Area/PubMed/Corpus">000C67</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The CaMKII holoenzyme structure in activation-competent conformations.</title>
<author>
<name sortKey="Myers, Janette B" sort="Myers, Janette B" uniqKey="Myers J" first="Janette B" last="Myers">Janette B. Myers</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaegel, Vincent" sort="Zaegel, Vincent" uniqKey="Zaegel V" first="Vincent" last="Zaegel">Vincent Zaegel</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coultrap, Steven J" sort="Coultrap, Steven J" uniqKey="Coultrap S" first="Steven J" last="Coultrap">Steven J. Coultrap</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Adam P" sort="Miller, Adam P" uniqKey="Miller A" first="Adam P" last="Miller">Adam P. Miller</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bayer, K Ulrich" sort="Bayer, K Ulrich" uniqKey="Bayer K" first="K Ulrich" last="Bayer">K Ulrich Bayer</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reichow, Steve L" sort="Reichow, Steve L" uniqKey="Reichow S" first="Steve L" last="Reichow">Steve L. Reichow</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2 (chemistry)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2 (genetics)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2 (metabolism)</term>
<term>Enzyme Activation</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Humans</term>
<term>Microscopy, Electron (methods)</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Protein Conformation</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microscopy, Electron</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Enzyme Activation</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Protein Conformation</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Ca
<sup>2+</sup>
/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15-35 nm in diameter. While most kinase domains are ordered independently, ∼20% appear to form dimers and <3% are consistent with a compact conformation. An additional level of plasticity is revealed by a small fraction of bona-fide 14-mers (<4%) that may enable subunit exchange. Biochemical and cellular FRET studies confirm that the extended state of CaMKIIα resolved by EM is the predominant form of the holoenzyme, even under molecular crowding conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28589927</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>The CaMKII holoenzyme structure in activation-competent conformations.</ArticleTitle>
<Pagination>
<MedlinePgn>15742</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms15742</ELocationID>
<Abstract>
<AbstractText>The Ca
<sup>2+</sup>
/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15-35 nm in diameter. While most kinase domains are ordered independently, ∼20% appear to form dimers and <3% are consistent with a compact conformation. An additional level of plasticity is revealed by a small fraction of bona-fide 14-mers (<4%) that may enable subunit exchange. Biochemical and cellular FRET studies confirm that the extended state of CaMKIIα resolved by EM is the predominant form of the holoenzyme, even under molecular crowding conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Myers</LastName>
<ForeName>Janette B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaegel</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coultrap</LastName>
<ForeName>Steven J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Adam P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bayer</LastName>
<ForeName>K Ulrich</ForeName>
<Initials>KU</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichow</LastName>
<ForeName>Steve L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Portland State University, Portland, Oregon 97021, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 NS048154</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS081248</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.7.11.17</RegistryNumber>
<NameOfSubstance UI="C517657">CAMK2A protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.17</RegistryNumber>
<NameOfSubstance UI="D054732">Calcium-Calmodulin-Dependent Protein Kinase Type 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Nat Commun. 2018 May 25;9:16180</RefSource>
<PMID Version="1">29799013</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054732" MajorTopicYN="N">Calcium-Calmodulin-Dependent Protein Kinase Type 2</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031541" MajorTopicYN="N">Fluorescence Resonance Energy Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28589927</ArticleId>
<ArticleId IdType="pii">ncomms15742</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms15742</ArticleId>
<ArticleId IdType="pmc">PMC5467236</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1993 Dec 10;262(5140):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8259515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Nov;17(11):4656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Jan 25;26(4):1164-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16436603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 05;9(5):e96522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24796865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Apr 6;30(7):1251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21343908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Feb 13;6(3):431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24485660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1994 May;12(5):943-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8185953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2012 Dec;180(3):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23000701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25883141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 9;279(5348):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9422695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 3;276(31):29353-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11384969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 4;275(31):23798-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Jul 13;31(28):10141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21752990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 May;11(5):1241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12769848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17930-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20353941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 23;10(3):e0121109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25799407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Feb;273(4):682-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Jan 22;81(2):249-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jul 15;21(14):3590-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2000 Sep;9(9):1753-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11045621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Feb 6;279(5352):870-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9452388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 23;273(43):28424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Aug 19;87(4):813-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2012 Feb 15;13(3):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22334212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Mar;17(3):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Jan 01;3:e01610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jul 29;291(31):16082-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27246855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2007 Jan;157(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Mar 7;31(5):1203-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22234183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):801-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1975 Jun 27;188(4195):1268-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 Mar 23;25(12):3107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Jul 27;8(7):e1000426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Apr 20;308(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11302701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Sep 2;146(5):732-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 11;289(28):19458-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24855644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Nov 05;2:e01319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24192038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Nov;115(4):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1659571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Mar 07;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26949248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Nov 2;10(21):1395-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11084343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Nov 15;136(3):481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6315430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Dec 2;123(5):849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2012 Oct;35(10):607-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22717267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28589927
   |texte=   The CaMKII holoenzyme structure in activation-competent conformations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28589927" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021