Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.

Identifieur interne : 000C17 ( PubMed/Corpus ); précédent : 000C16; suivant : 000C18

Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.

Auteurs : Vanessa Borges Pires ; Ricardo Sim Es ; Kamel Mamchaoui ; Célia Carvalho ; Maria Carmo-Fonseca

Source :

RBID : pubmed:28742140

English descriptors

Abstract

Splice-switching antisense oligonucleotides (SSOs) offer great potential for RNA-targeting therapies, and two SSO drugs have been recently approved for treating Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy (SMA). Despite promising results, new developments are still needed for more efficient chemistries and delivery systems. Locked nucleic acid (LNA) is a chemically modified nucleic acid that presents several attractive properties, such as high melting temperature when bound to RNA, potent biological activity, high stability and low toxicity in vivo. Here, we designed a series of LNA-based SSOs complementary to two sequences of the human dystrophin exon 51 that are most evolutionary conserved and evaluated their ability to induce exon skipping upon transfection into myoblasts derived from a DMD patient. We show that 16-mers with 60% of LNA modification efficiently induce exon skipping and restore synthesis of a truncated dystrophin isoform that localizes to the plasma membrane of patient-derived myotubes differentiated in culture. In sum, this study underscores the value of short LNA-modified SSOs for therapeutic applications.

DOI: 10.1371/journal.pone.0181065
PubMed: 28742140

Links to Exploration step

pubmed:28742140

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.</title>
<author>
<name sortKey="Pires, Vanessa Borges" sort="Pires, Vanessa Borges" uniqKey="Pires V" first="Vanessa Borges" last="Pires">Vanessa Borges Pires</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sim Es, Ricardo" sort="Sim Es, Ricardo" uniqKey="Sim Es R" first="Ricardo" last="Sim Es">Ricardo Sim Es</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mamchaoui, Kamel" sort="Mamchaoui, Kamel" uniqKey="Mamchaoui K" first="Kamel" last="Mamchaoui">Kamel Mamchaoui</name>
<affiliation>
<nlm:affiliation>Center for Research in Myology, INSERM UMRS974, CNRS FRE3617, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carvalho, Celia" sort="Carvalho, Celia" uniqKey="Carvalho C" first="Célia" last="Carvalho">Célia Carvalho</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carmo Fonseca, Maria" sort="Carmo Fonseca, Maria" uniqKey="Carmo Fonseca M" first="Maria" last="Carmo-Fonseca">Maria Carmo-Fonseca</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28742140</idno>
<idno type="pmid">28742140</idno>
<idno type="doi">10.1371/journal.pone.0181065</idno>
<idno type="wicri:Area/PubMed/Corpus">000C17</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.</title>
<author>
<name sortKey="Pires, Vanessa Borges" sort="Pires, Vanessa Borges" uniqKey="Pires V" first="Vanessa Borges" last="Pires">Vanessa Borges Pires</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sim Es, Ricardo" sort="Sim Es, Ricardo" uniqKey="Sim Es R" first="Ricardo" last="Sim Es">Ricardo Sim Es</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mamchaoui, Kamel" sort="Mamchaoui, Kamel" uniqKey="Mamchaoui K" first="Kamel" last="Mamchaoui">Kamel Mamchaoui</name>
<affiliation>
<nlm:affiliation>Center for Research in Myology, INSERM UMRS974, CNRS FRE3617, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carvalho, Celia" sort="Carvalho, Celia" uniqKey="Carvalho C" first="Célia" last="Carvalho">Célia Carvalho</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carmo Fonseca, Maria" sort="Carmo Fonseca, Maria" uniqKey="Carmo Fonseca M" first="Maria" last="Carmo-Fonseca">Maria Carmo-Fonseca</name>
<affiliation>
<nlm:affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Dystrophin (biosynthesis)</term>
<term>Dystrophin (genetics)</term>
<term>Exons</term>
<term>Genetic Therapy (methods)</term>
<term>Humans</term>
<term>Muscle Fibers, Skeletal (metabolism)</term>
<term>Muscular Dystrophy, Duchenne (genetics)</term>
<term>Muscular Dystrophy, Duchenne (metabolism)</term>
<term>Muscular Dystrophy, Duchenne (therapy)</term>
<term>Oligonucleotides (genetics)</term>
<term>Oligonucleotides (therapeutic use)</term>
<term>Oligonucleotides, Antisense (genetics)</term>
<term>Oligonucleotides, Antisense (therapeutic use)</term>
<term>Protein Isoforms (biosynthesis)</term>
<term>Protein Isoforms (genetics)</term>
<term>RNA Splicing</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Dystrophin</term>
<term>Protein Isoforms</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Dystrophin</term>
<term>Oligonucleotides</term>
<term>Oligonucleotides, Antisense</term>
<term>Protein Isoforms</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Muscular Dystrophy, Duchenne</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Muscle Fibers, Skeletal</term>
<term>Muscular Dystrophy, Duchenne</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Therapy</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Oligonucleotides</term>
<term>Oligonucleotides, Antisense</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Muscular Dystrophy, Duchenne</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Exons</term>
<term>Humans</term>
<term>RNA Splicing</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Splice-switching antisense oligonucleotides (SSOs) offer great potential for RNA-targeting therapies, and two SSO drugs have been recently approved for treating Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy (SMA). Despite promising results, new developments are still needed for more efficient chemistries and delivery systems. Locked nucleic acid (LNA) is a chemically modified nucleic acid that presents several attractive properties, such as high melting temperature when bound to RNA, potent biological activity, high stability and low toxicity in vivo. Here, we designed a series of LNA-based SSOs complementary to two sequences of the human dystrophin exon 51 that are most evolutionary conserved and evaluated their ability to induce exon skipping upon transfection into myoblasts derived from a DMD patient. We show that 16-mers with 60% of LNA modification efficiently induce exon skipping and restore synthesis of a truncated dystrophin isoform that localizes to the plasma membrane of patient-derived myotubes differentiated in culture. In sum, this study underscores the value of short LNA-modified SSOs for therapeutic applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28742140</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.</ArticleTitle>
<Pagination>
<MedlinePgn>e0181065</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0181065</ELocationID>
<Abstract>
<AbstractText>Splice-switching antisense oligonucleotides (SSOs) offer great potential for RNA-targeting therapies, and two SSO drugs have been recently approved for treating Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy (SMA). Despite promising results, new developments are still needed for more efficient chemistries and delivery systems. Locked nucleic acid (LNA) is a chemically modified nucleic acid that presents several attractive properties, such as high melting temperature when bound to RNA, potent biological activity, high stability and low toxicity in vivo. Here, we designed a series of LNA-based SSOs complementary to two sequences of the human dystrophin exon 51 that are most evolutionary conserved and evaluated their ability to induce exon skipping upon transfection into myoblasts derived from a DMD patient. We show that 16-mers with 60% of LNA modification efficiently induce exon skipping and restore synthesis of a truncated dystrophin isoform that localizes to the plasma membrane of patient-derived myotubes differentiated in culture. In sum, this study underscores the value of short LNA-modified SSOs for therapeutic applications.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pires</LastName>
<ForeName>Vanessa Borges</ForeName>
<Initials>VB</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simões</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mamchaoui</LastName>
<ForeName>Kamel</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Center for Research in Myology, INSERM UMRS974, CNRS FRE3617, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carvalho</LastName>
<ForeName>Célia</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5980-595X</Identifier>
<AffiliationInfo>
<Affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carmo-Fonseca</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C484258">DMD protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016189">Dystrophin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016376">Oligonucleotides, Antisense</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C477371">locked nucleic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016189" MajorTopicYN="N">Dystrophin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015316" MajorTopicYN="N">Genetic Therapy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018485" MajorTopicYN="N">Muscle Fibers, Skeletal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020388" MajorTopicYN="N">Muscular Dystrophy, Duchenne</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016376" MajorTopicYN="N">Oligonucleotides, Antisense</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012326" MajorTopicYN="N">RNA Splicing</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28742140</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0181065</ArticleId>
<ArticleId IdType="pii">PONE-D-16-49790</ArticleId>
<ArticleId IdType="pmc">PMC5524367</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Hum Mutat. 2009 Mar;30(3):293-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19156838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2008 Jul;16(7):1316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18461057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1989 Oct;45(4):498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 15;32(1):346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 2013;82:47-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurol Clin. 2014 Aug;32(3):671-88, viii</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25037084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Neurol. 2014 Oct;13(10):987-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25209738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jun 1;412(2):307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18271753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Dec 20;14(12):R143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Drug Deliv Rev. 2015 Jun 29;87:104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25980936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D710-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26687719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 2012 Jul;23(7):781-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22486275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oligonucleotides. 2010 Apr;20(2):69-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jun;12(6):996-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2013 Nov;74(5):637-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23907995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Mar 20;43(4):371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1999 Apr;154(4):1017-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther Nucleic Acids. 2013 Jan 22;2:e66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Skelet Muscle. 2011 Nov 01;1:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22040608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2006 Oct;14(4):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16854630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2011 Apr 21;364(16):1513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21428760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Nov;38(20):7100-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2007 Jul;15(7):1288-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17285139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuromuscul Disord. 2002 Oct;12 Suppl 1:S71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Sep 22;9(9):e107487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25244011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Apr 15;12(8):907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2001 Jan;8(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11182314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2009 Mar;17(3):548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18813282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 27;10(3):e0120058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25816009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jun 2;333(6172):466-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3287171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Sep 11;23(17):3578-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7567472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Nov;111:53-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25218783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oligonucleotides. 2005 Dec;15(4):284-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16396622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Dec;31(12):3164-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(12):8174-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24935206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2011 Aug 13;378(9791):595-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21784508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2007 Dec 27;357(26):2677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2011 Dec;18(12):1111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Dec 24;51(6):919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3319190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2015 Oct;24:52-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26277332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucleic Acids. 2012;2012:707323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23056920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther Nucleic Acids. 2012 Sep 04;1:e44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23344236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2009 Mar;17(3):554-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19142179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2017 Apr;20(4):497-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28192393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Oct 26;43(42):13233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2004 Sep;11(18):1391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2000 Aug 4;6(15):2687-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10985717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Des Devel Ther. 2017 Feb 28;11:533-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28280301</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:28742140
   |texte=   Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:28742140" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021