Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks.

Identifieur interne : 000A68 ( PubMed/Corpus ); précédent : 000A67; suivant : 000A69

Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks.

Auteurs : Dong-Woo Seo ; Soo-Yong Shin

Source :

RBID : pubmed:29181246

Abstract

For earlier detection of infectious disease outbreaks, a digital syndromic surveillance system based on search queries or social media should be utilized. By using real-time data sources, a digital syndromic surveillance system can overcome the limitation of time-delay in traditional surveillance systems. Here, we introduce an approach to develop such a digital surveillance system.

DOI: 10.4258/hir.2017.23.4.343
PubMed: 29181246

Links to Exploration step

pubmed:29181246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks.</title>
<author>
<name sortKey="Seo, Dong Woo" sort="Seo, Dong Woo" uniqKey="Seo D" first="Dong-Woo" last="Seo">Dong-Woo Seo</name>
<affiliation>
<nlm:affiliation>Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shin, Soo Yong" sort="Shin, Soo Yong" uniqKey="Shin S" first="Soo-Yong" last="Shin">Soo-Yong Shin</name>
<affiliation>
<nlm:affiliation>Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29181246</idno>
<idno type="pmid">29181246</idno>
<idno type="doi">10.4258/hir.2017.23.4.343</idno>
<idno type="wicri:Area/PubMed/Corpus">000A68</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks.</title>
<author>
<name sortKey="Seo, Dong Woo" sort="Seo, Dong Woo" uniqKey="Seo D" first="Dong-Woo" last="Seo">Dong-Woo Seo</name>
<affiliation>
<nlm:affiliation>Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shin, Soo Yong" sort="Shin, Soo Yong" uniqKey="Shin S" first="Soo-Yong" last="Shin">Soo-Yong Shin</name>
<affiliation>
<nlm:affiliation>Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Healthcare informatics research</title>
<idno type="ISSN">2093-3681</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For earlier detection of infectious disease outbreaks, a digital syndromic surveillance system based on search queries or social media should be utilized. By using real-time data sources, a digital syndromic surveillance system can overcome the limitation of time-delay in traditional surveillance systems. Here, we introduce an approach to develop such a digital surveillance system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29181246</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2093-3681</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Healthcare informatics research</Title>
<ISOAbbreviation>Healthc Inform Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks.</ArticleTitle>
<Pagination>
<MedlinePgn>343-348</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4258/hir.2017.23.4.343</ELocationID>
<Abstract>
<AbstractText Label="Objectives" NlmCategory="UNASSIGNED">For earlier detection of infectious disease outbreaks, a digital syndromic surveillance system based on search queries or social media should be utilized. By using real-time data sources, a digital syndromic surveillance system can overcome the limitation of time-delay in traditional surveillance systems. Here, we introduce an approach to develop such a digital surveillance system.</AbstractText>
<AbstractText Label="Methods" NlmCategory="UNASSIGNED">We first explain how the statistics data of infectious diseases, such as influenza and Middle East Respiratory Syndrome (MERS) in Korea, can be collected for reference data. Then we also explain how search engine queries can be retrieved from Google Trends. Finally, we describe the implementation of the prediction model using lagged correlation, which can be calculated by the statistical packages, i.e., SPSS (Statistical Package for the Social Sciences).</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">Lag correlation analyses demonstrated that search engine data/Twitter have a significant temporal relationship with influenza and MERS data. Therefore, the proposed digital surveillance system can be used to predict infectious disease outbreaks earlier.</AbstractText>
<AbstractText Label="Conclusions" NlmCategory="UNASSIGNED">This prediction method could be the core engine for implementing a (near-) real-time digital surveillance system. A digital surveillance system that uses Internet resources has enormous potential to monitor disease outbreaks in the early phase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Seo</LastName>
<ForeName>Dong-Woo</ForeName>
<Initials>DW</Initials>
<AffiliationInfo>
<Affiliation>Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shin</LastName>
<ForeName>Soo-Yong</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Engineering, Kyung Hee University, Yongin, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D002363">Case Reports</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>Healthc Inform Res</MedlineTA>
<NlmUniqueID>101534553</NlmUniqueID>
<ISSNLinking>2093-3681</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Digital Syndromic Surveillance System</Keyword>
<Keyword MajorTopicYN="N">Disease Outbreak</Keyword>
<Keyword MajorTopicYN="N">Search Engine</Keyword>
<Keyword MajorTopicYN="N">Social Media</Keyword>
</KeywordList>
<CoiStatement>Conflict of Interest: No potential conflict of interest relevant to this article was reported.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29181246</ArticleId>
<ArticleId IdType="doi">10.4258/hir.2017.23.4.343</ArticleId>
<ArticleId IdType="pmc">PMC5688036</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Dec 05;8(12):e81422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24339927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Suppl. 2004 Sep 24;53:5-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15714620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jul 08;11(7):e0158539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27391028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMIA Annu Symp Proc. 2006;:244-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17238340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 19;457(7232):1012-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 06;6:32920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27595921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(2):e4378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Mar 14;343(6176):1203-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24626916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Jun 18;360(25):2605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2011 Nov 26;378(9806):1833-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Internet Res. 2014 Dec 16;16(12):e289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25517353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29181246
   |texte=   Methods Using Social Media and Search Queries to Predict Infectious Disease Outbreaks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29181246" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021