Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system.

Identifieur interne : 000995 ( PubMed/Corpus ); précédent : 000994; suivant : 000996

Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system.

Auteurs : Gergely Ivády ; Lászl Madar ; Erika Dzsudzsák ; Katalin Koczok ; János Kappelmayer ; Veronika Krulisova ; Milan Macek ; Attila Horváth ; István Balogh

Source :

RBID : pubmed:29466940

English descriptors

Abstract

Current technologies in next-generation sequencing are offering high throughput reads at low costs, but still suffer from various sequencing errors. Although pyro- and ion semiconductor sequencing both have the advantage of delivering long and high quality reads, problems might occur when sequencing homopolymer-containing regions, since the repeating identical bases are going to incorporate during the same synthesis cycle, which leads to uncertainty in base calling. The aim of this study was to evaluate the analytical performance of a pyrosequencing-based next-generation sequencing system in detecting homopolymer sequences using homopolymer-preintegrated plasmid constructs and human DNA samples originating from patients with cystic fibrosis.

DOI: 10.1186/s12864-018-4544-x
PubMed: 29466940

Links to Exploration step

pubmed:29466940

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system.</title>
<author>
<name sortKey="Ivady, Gergely" sort="Ivady, Gergely" uniqKey="Ivady G" first="Gergely" last="Ivády">Gergely Ivády</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madar, Laszl" sort="Madar, Laszl" uniqKey="Madar L" first="Lászl" last="Madar">Lászl Madar</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dzsudzsak, Erika" sort="Dzsudzsak, Erika" uniqKey="Dzsudzsak E" first="Erika" last="Dzsudzsák">Erika Dzsudzsák</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koczok, Katalin" sort="Koczok, Katalin" uniqKey="Koczok K" first="Katalin" last="Koczok">Katalin Koczok</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kappelmayer, Janos" sort="Kappelmayer, Janos" uniqKey="Kappelmayer J" first="János" last="Kappelmayer">János Kappelmayer</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krulisova, Veronika" sort="Krulisova, Veronika" uniqKey="Krulisova V" first="Veronika" last="Krulisova">Veronika Krulisova</name>
<affiliation>
<nlm:affiliation>Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macek, Milan" sort="Macek, Milan" uniqKey="Macek M" first="Milan" last="Macek">Milan Macek</name>
<affiliation>
<nlm:affiliation>Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Attila" sort="Horvath, Attila" uniqKey="Horvath A" first="Attila" last="Horváth">Attila Horváth</name>
<affiliation>
<nlm:affiliation>Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Balogh, Istvan" sort="Balogh, Istvan" uniqKey="Balogh I" first="István" last="Balogh">István Balogh</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. balogh@med.unideb.hu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29466940</idno>
<idno type="pmid">29466940</idno>
<idno type="doi">10.1186/s12864-018-4544-x</idno>
<idno type="wicri:Area/PubMed/Corpus">000995</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000995</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system.</title>
<author>
<name sortKey="Ivady, Gergely" sort="Ivady, Gergely" uniqKey="Ivady G" first="Gergely" last="Ivády">Gergely Ivády</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madar, Laszl" sort="Madar, Laszl" uniqKey="Madar L" first="Lászl" last="Madar">Lászl Madar</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dzsudzsak, Erika" sort="Dzsudzsak, Erika" uniqKey="Dzsudzsak E" first="Erika" last="Dzsudzsák">Erika Dzsudzsák</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koczok, Katalin" sort="Koczok, Katalin" uniqKey="Koczok K" first="Katalin" last="Koczok">Katalin Koczok</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kappelmayer, Janos" sort="Kappelmayer, Janos" uniqKey="Kappelmayer J" first="János" last="Kappelmayer">János Kappelmayer</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krulisova, Veronika" sort="Krulisova, Veronika" uniqKey="Krulisova V" first="Veronika" last="Krulisova">Veronika Krulisova</name>
<affiliation>
<nlm:affiliation>Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macek, Milan" sort="Macek, Milan" uniqKey="Macek M" first="Milan" last="Macek">Milan Macek</name>
<affiliation>
<nlm:affiliation>Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Attila" sort="Horvath, Attila" uniqKey="Horvath A" first="Attila" last="Horváth">Attila Horváth</name>
<affiliation>
<nlm:affiliation>Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Balogh, Istvan" sort="Balogh, Istvan" uniqKey="Balogh I" first="István" last="Balogh">István Balogh</name>
<affiliation>
<nlm:affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. balogh@med.unideb.hu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cystic Fibrosis (genetics)</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator (genetics)</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>Humans</term>
<term>Plasmids</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Tandem Repeat Sequences</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cystic Fibrosis Transmembrane Conductance Regulator</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cystic Fibrosis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Plasmids</term>
<term>Tandem Repeat Sequences</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Current technologies in next-generation sequencing are offering high throughput reads at low costs, but still suffer from various sequencing errors. Although pyro- and ion semiconductor sequencing both have the advantage of delivering long and high quality reads, problems might occur when sequencing homopolymer-containing regions, since the repeating identical bases are going to incorporate during the same synthesis cycle, which leads to uncertainty in base calling. The aim of this study was to evaluate the analytical performance of a pyrosequencing-based next-generation sequencing system in detecting homopolymer sequences using homopolymer-preintegrated plasmid constructs and human DNA samples originating from patients with cystic fibrosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29466940</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system.</ArticleTitle>
<Pagination>
<MedlinePgn>158</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-018-4544-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Current technologies in next-generation sequencing are offering high throughput reads at low costs, but still suffer from various sequencing errors. Although pyro- and ion semiconductor sequencing both have the advantage of delivering long and high quality reads, problems might occur when sequencing homopolymer-containing regions, since the repeating identical bases are going to incorporate during the same synthesis cycle, which leads to uncertainty in base calling. The aim of this study was to evaluate the analytical performance of a pyrosequencing-based next-generation sequencing system in detecting homopolymer sequences using homopolymer-preintegrated plasmid constructs and human DNA samples originating from patients with cystic fibrosis.</AbstractText>
<AbstractText Label="RESULTS">In the plasmid system average correct genotyping was 95.8% in 4-mers, 87.4% in 5-mers and 72.1% in 6-mers. Despite the experienced low genotyping accuracy in 5- and 6-mers, it was possible to generate amplicons with more than a 90% adequate detection rate in every homopolymer tract. When homopolymers in the CFTR gene were sequenced average accuracy was 89.3%, but varied in a wide range (52.2 - 99.1%). In all but one case, an optimal amplicon-sequencing primer combination could be identified. In that single case (7A tract in exon 14 (c.2046_2052)), none of the tested primer sets produced the required analytical performance.</AbstractText>
<AbstractText Label="CONCLUSIONS">Our results show that pyrosequencing is the most reliable in case of 4-mers and as homopolymer length gradually increases, accuracy deteriorates. With careful primer selection, the NGS system was able to correctly genotype all but one of the homopolymers in the CFTR gene. In conclusion, we configured a plasmid test system that can be used to assess genotyping accuracy of NGS devices and developed an accurate NGS assay for the molecular diagnosis of CF using self-designed primers for amplification and sequencing.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ivády</LastName>
<ForeName>Gergely</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Madar</LastName>
<ForeName>László</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dzsudzsák</LastName>
<ForeName>Erika</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koczok</LastName>
<ForeName>Katalin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Clinical Genetics, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kappelmayer</LastName>
<ForeName>János</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krulisova</LastName>
<ForeName>Veronika</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Macek</LastName>
<ForeName>Milan</ForeName>
<Initials>M</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Biology and Medical Genetics, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horváth</LastName>
<ForeName>Attila</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Balogh</LastName>
<ForeName>István</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Laboratory Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. balogh@med.unideb.hu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Clinical Genetics, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary. balogh@med.unideb.hu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K109076</GrantID>
<Agency>Országos Tudományos Kutatási Alapprogramok</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>00064203</GrantID>
<Agency>Ministerstvo Zdravotnictví Ceské Republiky</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>CZ.2.16/3.1.00/24022OPPK</GrantID>
<Agency>European Regional Development Fund Prague</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>NF-CZ11-PDP-3-003-2014, LM2015091 and COST-LD14073</GrantID>
<Agency>Norway Grants</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>UNKP-16-3 IV/4</GrantID>
<Agency>New National Excellence Program of the Ministry of Human Capacities</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>GINOP-2.3.2-15-2016-00039</GrantID>
<Agency>Ministry of National Economy, Hungary</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D023361">Validation Study</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C505032">CFTR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>126880-72-6</RegistryNumber>
<NameOfSubstance UI="D019005">Cystic Fibrosis Transmembrane Conductance Regulator</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003550" MajorTopicYN="N">Cystic Fibrosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019005" MajorTopicYN="N">Cystic Fibrosis Transmembrane Conductance Regulator</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020080" MajorTopicYN="Y">Tandem Repeat Sequences</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cystic fibrosis</Keyword>
<Keyword MajorTopicYN="Y">Homopolymer detection</Keyword>
<Keyword MajorTopicYN="Y">Pyrosequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29466940</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-018-4544-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-018-4544-x</ArticleId>
<ArticleId IdType="pmc">PMC5822529</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur J Hum Genet. 2015 Jan;23(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 29;289(5488):2342-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11009418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Hum Genet. 2009 Jan;17(1):51-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 May 06;15:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jul 17;281(5375):363, 365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Biochem. 2015 Jan;34(1):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28356823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Jan;14(1):56-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Hum Genet. 2013 Aug;21(8):864-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Nov 19-25;330(6145):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3670410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pathol Lab Med. 2013 Sep;137(9):1296-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23991743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Jan 28;12:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21276213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2013 Oct;59(10):1481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23775370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015 Mar 15;16:88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Jan;11(1):31-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jul 1;27(13):i304-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(7):R143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Apr 27;9(5):425-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 2006 Jan;363(1-2):83-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16165119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2000 Nov 15;286(2):282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11067751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Nov 1;174(2):423-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2853582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2000 Jan;66(1):69-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jul;41(13):e136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23700313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 May;58(5):584-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 20;475(7356):348-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jul 27;12 (7):e0181463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28749987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Sep 1;26(17):4056-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015 Mar 27;16:105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25885646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2015;16 Suppl 17:S2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Oct 1;29(19):2402-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23900188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cyst Fibros. 2010 Sep;9(5):371-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 May;17(5):2859-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jul 28;334(6180):364-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3393228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 May 19;12:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Nov 15;13:303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cyst Fibros. 2011 May;10(3):217-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jul;10(7):967-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Oct;26(10):1135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18846087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem Struct Biol. 2012;89:1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 05;8(9):e73015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24039850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Prev Res (Phila). 2012 Jul;5(7):887-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Oct 15;260(23):12866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3930505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Apr 29;190(1):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9185844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000995 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000995 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29466940
   |texte=   Analytical parameters and validation of homopolymer detection in a pyrosequencing-based next generation sequencing system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29466940" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021