Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.

Identifieur interne : 000980 ( PubMed/Corpus ); précédent : 000979; suivant : 000981

Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.

Auteurs : Maria L. Agostini ; Erica L. Andres ; Amy C. Sims ; Rachel L. Graham ; Timothy P. Sheahan ; Xiaotao Lu ; Everett Clinton Smith ; James Brett Case ; Joy Y. Feng ; Robert Jordan ; Adrian S. Ray ; Tomas Cihlar ; Dustin Siegel ; Richard L. Mackman ; Michael O. Clarke ; Ralph S. Baric ; Mark R. Denison

Source :

RBID : pubmed:29511076

English descriptors

Abstract

Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.

DOI: 10.1128/mBio.00221-18
PubMed: 29511076

Links to Exploration step

pubmed:29511076

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.</title>
<author>
<name sortKey="Agostini, Maria L" sort="Agostini, Maria L" uniqKey="Agostini M" first="Maria L" last="Agostini">Maria L. Agostini</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andres, Erica L" sort="Andres, Erica L" uniqKey="Andres E" first="Erica L" last="Andres">Erica L. Andres</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Case, James Brett" sort="Case, James Brett" uniqKey="Case J" first="James Brett" last="Case">James Brett Case</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Joy Y" sort="Feng, Joy Y" uniqKey="Feng J" first="Joy Y" last="Feng">Joy Y. Feng</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jordan, Robert" sort="Jordan, Robert" uniqKey="Jordan R" first="Robert" last="Jordan">Robert Jordan</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ray, Adrian S" sort="Ray, Adrian S" uniqKey="Ray A" first="Adrian S" last="Ray">Adrian S. Ray</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cihlar, Tomas" sort="Cihlar, Tomas" uniqKey="Cihlar T" first="Tomas" last="Cihlar">Tomas Cihlar</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Siegel, Dustin" sort="Siegel, Dustin" uniqKey="Siegel D" first="Dustin" last="Siegel">Dustin Siegel</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mackman, Richard L" sort="Mackman, Richard L" uniqKey="Mackman R" first="Richard L" last="Mackman">Richard L. Mackman</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Michael O" sort="Clarke, Michael O" uniqKey="Clarke M" first="Michael O" last="Clarke">Michael O. Clarke</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA rbaric@email.unc.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA rbaric@email.unc.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29511076</idno>
<idno type="pmid">29511076</idno>
<idno type="doi">10.1128/mBio.00221-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000980</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000980</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.</title>
<author>
<name sortKey="Agostini, Maria L" sort="Agostini, Maria L" uniqKey="Agostini M" first="Maria L" last="Agostini">Maria L. Agostini</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Andres, Erica L" sort="Andres, Erica L" uniqKey="Andres E" first="Erica L" last="Andres">Erica L. Andres</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Case, James Brett" sort="Case, James Brett" uniqKey="Case J" first="James Brett" last="Case">James Brett Case</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Joy Y" sort="Feng, Joy Y" uniqKey="Feng J" first="Joy Y" last="Feng">Joy Y. Feng</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jordan, Robert" sort="Jordan, Robert" uniqKey="Jordan R" first="Robert" last="Jordan">Robert Jordan</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ray, Adrian S" sort="Ray, Adrian S" uniqKey="Ray A" first="Adrian S" last="Ray">Adrian S. Ray</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cihlar, Tomas" sort="Cihlar, Tomas" uniqKey="Cihlar T" first="Tomas" last="Cihlar">Tomas Cihlar</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Siegel, Dustin" sort="Siegel, Dustin" uniqKey="Siegel D" first="Dustin" last="Siegel">Dustin Siegel</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mackman, Richard L" sort="Mackman, Richard L" uniqKey="Mackman R" first="Richard L" last="Mackman">Richard L. Mackman</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Michael O" sort="Clarke, Michael O" uniqKey="Clarke M" first="Michael O" last="Clarke">Michael O. Clarke</name>
<affiliation>
<nlm:affiliation>Gilead Sciences, Inc., Foster City, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA rbaric@email.unc.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA rbaric@email.unc.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine (analogs & derivatives)</term>
<term>Alanine (pharmacology)</term>
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Coronavirus (drug effects)</term>
<term>Coronavirus (enzymology)</term>
<term>Exoribonucleases (chemistry)</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Mice</term>
<term>Mutation (genetics)</term>
<term>Ribonucleotides (pharmacology)</term>
<term>SARS Virus (drug effects)</term>
<term>SARS Virus (genetics)</term>
<term>Virus Replication (drug effects)</term>
<term>Virus Replication (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Alanine</term>
<term>Antiviral Agents</term>
<term>Ribonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Coronavirus</term>
<term>SARS Virus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>SARS Virus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs
<i>in vitro</i>
and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC
<sub>50</sub>
) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC
<sub>50</sub>
The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same
<i>in vitro</i>
resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.
<b>IMPORTANCE</b>
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV
<i>in vitro</i>
and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29511076</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00221-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00221-18</ELocationID>
<Abstract>
<AbstractText>Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs
<i>in vitro</i>
and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC
<sub>50</sub>
) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC
<sub>50</sub>
The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same
<i>in vitro</i>
resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.
<b>IMPORTANCE</b>
Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV
<i>in vitro</i>
and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.</AbstractText>
<CopyrightInformation>Copyright © 2018 Agostini et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Agostini</LastName>
<ForeName>Maria L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Andres</LastName>
<ForeName>Erica L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sims</LastName>
<ForeName>Amy C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Rachel L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheahan</LastName>
<ForeName>Timothy P</ForeName>
<Initials>TP</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xiaotao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Everett Clinton</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, the University of the South, Sewanee, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Case</LastName>
<ForeName>James Brett</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Joy Y</ForeName>
<Initials>JY</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jordan</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ray</LastName>
<ForeName>Adrian S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cihlar</LastName>
<ForeName>Tomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siegel</LastName>
<ForeName>Dustin</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mackman</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clarke</LastName>
<ForeName>Michael O</ForeName>
<Initials>MO</Initials>
<AffiliationInfo>
<Affiliation>Gilead Sciences, Inc., Foster City, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA rbaric@email.unc.edu mark.denison@vanderbilt.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA rbaric@email.unc.edu mark.denison@vanderbilt.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI112541</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI089554</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI132178</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DK065988</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI109680</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012265">Ribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3QKI37EEHE</RegistryNumber>
<NameOfSubstance UI="C000606551">remdesivir</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012265" MajorTopicYN="N">Ribonucleotides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">RNA polymerases</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV</Keyword>
<Keyword MajorTopicYN="Y">antiviral agents</Keyword>
<Keyword MajorTopicYN="Y">antiviral resistance</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">nucleoside analogs</Keyword>
<Keyword MajorTopicYN="Y">pandemic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29511076</ArticleId>
<ArticleId IdType="pii">mBio.00221-18</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00221-18</ArticleId>
<ArticleId IdType="pmc">PMC5844999</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2010 May 06;6(5):e1000896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367 (19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Nov 15;25(22):4532-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9358162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Dec 15;31(24):7117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2000 Dec;6(12):1375-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11100123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2017 Jun 28;9(396):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25197083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):2038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Jan;101:122-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24269475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Feb;52(2):458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2017 Feb 9;376(6):584-594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28177862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Aug;9(8):e1003565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23966862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Oct;1(2):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16220146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Aug 06;4(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23919993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Apr 17;508(7496):402-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jul 27;90(16):7415-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27279608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2016 May;15(5):327-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26868298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16038-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Oct;20(4):660-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15511-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Chem Chemother. 2006;17(5):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2005;107:183-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15492373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Sep 29;7(10):5206-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26426038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Jun;50(6):2000-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2016 Jul;29(3):695-747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27281742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 1998 May 7;12(7):705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9619801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Nov 25;256(22):11447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6271750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2015 Apr;28(2):465-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2016 Apr 15;213(8):1240-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Nov;100(2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23994190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2012 Apr 15;22(8):2705-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterol Hepatol (N Y). 2007 Mar;3(3):218-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21960835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Mar 25;5(2):e00047-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Public Health. 2016 May-Jun;9(3):220-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Nov;57(11):5202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23917318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2011 Jun;6(6):925-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 06;7:43395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28262699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E162-E171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29279395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Mar 1;271(5253):1282-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8638110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 29;104(22):9463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4197928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 17;531(7594):381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26934220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 5;278(49):49164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000980 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000980 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29511076
   |texte=   Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29511076" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021