Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus.

Identifieur interne : 000950 ( PubMed/Corpus ); précédent : 000949; suivant : 000951

Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus.

Auteurs : Paul Gale

Source :

RBID : pubmed:32289059

Abstract

Assessing the risk of infection from emerging viruses or of existing viruses jumping the species barrier into novel hosts is limited by the lack of dose response data. The initial stages of the infection of a host by a virus involve a series of specific contact interactions between molecules in the host and on the virus surface. The strength of the interaction is quantified in the literature by the dissociation constant (Kd) which is determined experimentally and is specific for a given virus molecule/host molecule combination. Here, two stages of the initial infection process of host intestinal cells are modelled, namely escape of the virus in the oral challenge dose from the innate host defenses (e.g. mucin proteins in mucus) and the subsequent binding of any surviving virus to receptor molecules on the surface of the host epithelial cells. The strength of virus binding to host cells and to mucins may be quantified by the association constants, Ka and Kmucin, respectively. Here, a mechanistic dose-response model for the probability of infection of a host by a given virus dose is constructed using Ka and Kmucin which may be derived from published Kd values taking into account the number of specific molecular interactions. It is shown that the effectiveness of the mucus barrier is determined not only by the amount of mucin but also by the magnitude of Kmucin. At very high Kmucin values, slight excesses of mucin over virus are sufficient to remove all the virus according to the model. At lower Kmucin values, high numbers of virus may escape even with large excesses of mucin. The output from the mechanistic model is the probability (p1) of infection by a single virion which is the parameter used in conventional dose-response models to predict the risk of infection of the host from the ingested dose. It is shown here how differences in Ka (due to molecular differences in an emerging virus strain or new host) affect p1, and how these differences in Ka may be quantified in terms of two thermodynamic parameters, namely enthalpy and entropy. This provides the theoretical link between sequencing data and risk of infection. Lack of data on entropy is a limitation at present and may also affect our interpretation of Kd in terms of infectivity. It is concluded that thermodynamic approaches have a major contribution to make in developing dose-response models for emerging viruses.

DOI: 10.1016/j.mran.2018.01.002
PubMed: 32289059

Links to Exploration step

pubmed:32289059

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus.</title>
<author>
<name sortKey="Gale, Paul" sort="Gale, Paul" uniqKey="Gale P" first="Paul" last="Gale">Paul Gale</name>
<affiliation>
<nlm:affiliation>59 Fairway Avenue, Tilehurst, Reading, Berkshire, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:32289059</idno>
<idno type="pmid">32289059</idno>
<idno type="doi">10.1016/j.mran.2018.01.002</idno>
<idno type="wicri:Area/PubMed/Corpus">000950</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000950</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus.</title>
<author>
<name sortKey="Gale, Paul" sort="Gale, Paul" uniqKey="Gale P" first="Paul" last="Gale">Paul Gale</name>
<affiliation>
<nlm:affiliation>59 Fairway Avenue, Tilehurst, Reading, Berkshire, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbial risk analysis</title>
<idno type="eISSN">2352-3530</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Assessing the risk of infection from emerging viruses or of existing viruses jumping the species barrier into novel hosts is limited by the lack of dose response data. The initial stages of the infection of a host by a virus involve a series of specific contact interactions between molecules in the host and on the virus surface. The strength of the interaction is quantified in the literature by the dissociation constant (K
<sub>d</sub>
) which is determined experimentally and is specific for a given virus molecule/host molecule combination. Here, two stages of the initial infection process of host intestinal cells are modelled, namely escape of the virus in the oral challenge dose from the innate host defenses (e.g. mucin proteins in mucus) and the subsequent binding of any surviving virus to receptor molecules on the surface of the host epithelial cells. The strength of virus binding to host cells and to mucins may be quantified by the association constants, K
<sub>a</sub>
and K
<sub>mucin</sub>
, respectively. Here, a mechanistic dose-response model for the probability of infection of a host by a given virus dose is constructed using K
<sub>a</sub>
and K
<sub>mucin</sub>
which may be derived from published K
<sub>d</sub>
values taking into account the number of specific molecular interactions. It is shown that the effectiveness of the mucus barrier is determined not only by the amount of mucin but also by the magnitude of K
<sub>mucin</sub>
. At very high K
<sub>mucin</sub>
values, slight excesses of mucin over virus are sufficient to remove all the virus according to the model. At lower K
<sub>mucin</sub>
values, high numbers of virus may escape even with large excesses of mucin. The output from the mechanistic model is the probability (p
<sub>1</sub>
) of infection by a single virion which is the parameter used in conventional dose-response models to predict the risk of infection of the host from the ingested dose. It is shown here how differences in K
<sub>a</sub>
(due to molecular differences in an emerging virus strain or new host) affect p
<sub>1</sub>
, and how these differences in K
<sub>a</sub>
may be quantified in terms of two thermodynamic parameters, namely enthalpy and entropy. This provides the theoretical link between sequencing data and risk of infection. Lack of data on entropy is a limitation at present and may also affect our interpretation of K
<sub>d</sub>
in terms of infectivity. It is concluded that thermodynamic approaches have a major contribution to make in developing dose-response models for emerging viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32289059</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2352-3530</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2018</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Microbial risk analysis</Title>
<ISOAbbreviation>Microb Risk Anal</ISOAbbreviation>
</Journal>
<ArticleTitle>Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus.</ArticleTitle>
<Pagination>
<MedlinePgn>1-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mran.2018.01.002</ELocationID>
<Abstract>
<AbstractText>Assessing the risk of infection from emerging viruses or of existing viruses jumping the species barrier into novel hosts is limited by the lack of dose response data. The initial stages of the infection of a host by a virus involve a series of specific contact interactions between molecules in the host and on the virus surface. The strength of the interaction is quantified in the literature by the dissociation constant (K
<sub>d</sub>
) which is determined experimentally and is specific for a given virus molecule/host molecule combination. Here, two stages of the initial infection process of host intestinal cells are modelled, namely escape of the virus in the oral challenge dose from the innate host defenses (e.g. mucin proteins in mucus) and the subsequent binding of any surviving virus to receptor molecules on the surface of the host epithelial cells. The strength of virus binding to host cells and to mucins may be quantified by the association constants, K
<sub>a</sub>
and K
<sub>mucin</sub>
, respectively. Here, a mechanistic dose-response model for the probability of infection of a host by a given virus dose is constructed using K
<sub>a</sub>
and K
<sub>mucin</sub>
which may be derived from published K
<sub>d</sub>
values taking into account the number of specific molecular interactions. It is shown that the effectiveness of the mucus barrier is determined not only by the amount of mucin but also by the magnitude of K
<sub>mucin</sub>
. At very high K
<sub>mucin</sub>
values, slight excesses of mucin over virus are sufficient to remove all the virus according to the model. At lower K
<sub>mucin</sub>
values, high numbers of virus may escape even with large excesses of mucin. The output from the mechanistic model is the probability (p
<sub>1</sub>
) of infection by a single virion which is the parameter used in conventional dose-response models to predict the risk of infection of the host from the ingested dose. It is shown here how differences in K
<sub>a</sub>
(due to molecular differences in an emerging virus strain or new host) affect p
<sub>1</sub>
, and how these differences in K
<sub>a</sub>
may be quantified in terms of two thermodynamic parameters, namely enthalpy and entropy. This provides the theoretical link between sequencing data and risk of infection. Lack of data on entropy is a limitation at present and may also affect our interpretation of K
<sub>d</sub>
in terms of infectivity. It is concluded that thermodynamic approaches have a major contribution to make in developing dose-response models for emerging viruses.</AbstractText>
<CopyrightInformation>© 2018 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gale</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>59 Fairway Avenue, Tilehurst, Reading, Berkshire, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Microb Risk Anal</MedlineTA>
<NlmUniqueID>101728821</NlmUniqueID>
<ISSNLinking>2352-3522</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Asp, aspartate</Keyword>
<Keyword MajorTopicYN="N">CRD, carbohydrate-recognition domain</Keyword>
<Keyword MajorTopicYN="N">Cr, host cell receptor</Keyword>
<Keyword MajorTopicYN="N">Dose-response</Keyword>
<Keyword MajorTopicYN="N">EBOV, Zaire ebolavirus</Keyword>
<Keyword MajorTopicYN="N">Enthalpy</Keyword>
<Keyword MajorTopicYN="N">Entropy</Keyword>
<Keyword MajorTopicYN="N">G, Gibbs free energy</Keyword>
<Keyword MajorTopicYN="N">GI, gastrointestinal</Keyword>
<Keyword MajorTopicYN="N">GP, glycoprotein</Keyword>
<Keyword MajorTopicYN="N">H, enthalpy</Keyword>
<Keyword MajorTopicYN="N">HA, haemagglutinin</Keyword>
<Keyword MajorTopicYN="N">HBGA, histoblood group antigen</Keyword>
<Keyword MajorTopicYN="N">HeV, Hendra virus</Keyword>
<Keyword MajorTopicYN="N">Ka, Kmucin, association constants</Keyword>
<Keyword MajorTopicYN="N">Kd, dissociation constant for two molecules bound to each other</Keyword>
<Keyword MajorTopicYN="N">L, Avogadro number</Keyword>
<Keyword MajorTopicYN="N">M, molar (moles dm−3)</Keyword>
<Keyword MajorTopicYN="N">MBP, mannose binding protein</Keyword>
<Keyword MajorTopicYN="N">MERS-CoV, MERS coronavirus</Keyword>
<Keyword MajorTopicYN="N">MRA, microbiological risk assessment</Keyword>
<Keyword MajorTopicYN="N">Mucin</Keyword>
<Keyword MajorTopicYN="N">NPC1, Niemann-Pick C1 protein</Keyword>
<Keyword MajorTopicYN="N">NiV, Nipah virus</Keyword>
<Keyword MajorTopicYN="N">NoV, norovirus</Keyword>
<Keyword MajorTopicYN="N">PL, phospholipid</Keyword>
<Keyword MajorTopicYN="N">PRR, pathogen recognition receptor</Keyword>
<Keyword MajorTopicYN="N">Phe, phenylalanine</Keyword>
<Keyword MajorTopicYN="N">R, ideal gas constant</Keyword>
<Keyword MajorTopicYN="N">S, entropy</Keyword>
<Keyword MajorTopicYN="N">SPR, surface plasmon resonance</Keyword>
<Keyword MajorTopicYN="N">T, temperature</Keyword>
<Keyword MajorTopicYN="N">TIM-1, T-cell immunoglobulin and mucin domain protein 1</Keyword>
<Keyword MajorTopicYN="N">VSV, vesicular stomatitis virus</Keyword>
<Keyword MajorTopicYN="N">Virus</Keyword>
<Keyword MajorTopicYN="N">k, on/off rate constant</Keyword>
<Keyword MajorTopicYN="N">n, number of GP/Cr molecular contacts per virus/host cell binding</Keyword>
<Keyword MajorTopicYN="N">pfu, plaque-forming unit</Keyword>
<Keyword MajorTopicYN="N">ΔGa, change in Gibbs free energy on association of virus and cell</Keyword>
<Keyword MajorTopicYN="N">ΔHa, change in enthalpy on association of virus and cell</Keyword>
<Keyword MajorTopicYN="N">ΔSa, change in entropy on association of virus and cell</Keyword>
<Keyword MajorTopicYN="N">ΔΔHa, change in ΔHa</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32289059</ArticleId>
<ArticleId IdType="doi">10.1016/j.mran.2018.01.002</ArticleId>
<ArticleId IdType="pii">S2352-3522(17)30156-1</ArticleId>
<ArticleId IdType="pmc">PMC7103988</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):1976-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23355680</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011 Apr 22;6(4):e17887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2012;842:67-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22259130</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J R Soc Interface. 2014 Jan 15;11(92):20131083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Appl Microbiol. 2014 Dec;117(6):1537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25269811</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Sep;85(17):8635-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715503</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3756-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907215</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Jul 5;337(2):210-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882887</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2002 Sep;83(3):1341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202359</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2014 Apr 16;33(8):823-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24668228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010 Aug 04;5(8):e11978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20694141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2016 Mar;590(5):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26846330</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2015 Dec 23;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26698106</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Aug 8;500(7461):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2016 Nov 3;167(4):1079-1087.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27814505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2016 Nov 3;167(4):1088-1098.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27814506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Jan 19;38(3):1095-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9894006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Transbound Emerg Dis. 2017 Dec;64(6):1676-1693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27670273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2017 Feb;23(2):220-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27869615</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2013 Nov;21(11):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24011860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2016 Jan 14;164(1-2):258-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26771495</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Aug;77(8):4760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6933523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(11):e48742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144952</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2015 Feb;24(2):221-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25424537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Apr;9(4):265-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21407243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Jan 15;89(2):1205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Diagn Res. 2014 Oct;8(10):ZC56-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1998 Feb;66(2):441-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9453592</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2016 Feb 22;11(2):e0149651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26901159</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2000 Sep;79(3):1180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10968982</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2009 Mar;5(3):e1000316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19282967</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 May;85(9):4057-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21345963</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2014 Nov;22(11):632-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25108746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Cell. 2015 Nov;6(11):814-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26487564</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J R Soc Interface. 2012 Dec 12;10(79):20120835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Appl Microbiol. 2016 Jan;120(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26480954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Carbohydr Chem Biochem. 2010;63:139-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2005 Dec;114(1-2):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(1):e29608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2016 May 19;120(19):4341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27111521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1990 Mar 6;29(9):2403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2337607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Risk Anal. 2004 Apr;24(2):401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000950 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000950 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32289059
   |texte=   Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32289059" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021