Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.

Identifieur interne : 000859 ( PubMed/Corpus ); précédent : 000858; suivant : 000860

Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.

Auteurs : Olga V. Matveeva ; Aleksey Y. Ogurtsov ; Nafisa N. Nazipova ; Svetlana A. Shabalina

Source :

RBID : pubmed:29928000

English descriptors

Abstract

Off-target oligoprobe's interaction with partially complementary nucleotide sequences represents a problem for many bio-techniques. The goal of the study was to identify oligoprobe sequence characteristics that control the ratio between on-target and off-target hybridization. To understand the complex interplay between specific and genome-wide off-target (cross-hybridization) signals, we analyzed a database derived from genomic comparison hybridization experiments performed with an Affymetrix tiling array. The database included two types of probes with signals derived from (i) a combination of specific signal and cross-hybridization and (ii) genomic cross-hybridization only. All probes from the database were grouped into bins according to their sequence characteristics, where both hybridization signals were averaged separately. For selection of specific probes, we analyzed the following sequence characteristics: vulnerability to self-folding, nucleotide composition bias, numbers of G nucleotides and GGG-blocks, and occurrence of probe's k-mers in the human genome. Increases in bin ranges for these characteristics are simultaneously accompanied by a decrease in hybridization specificity-the ratio between specific and cross-hybridization signals. However, both averaged hybridization signals exhibit growing trends along with an increase of probes' binding energy, where the hybridization specific signal increases significantly faster in comparison to the cross-hybridization. The same trend is evident for the S function, which serves as a combined evaluation of probe binding energy and occurrence of probe's k-mers in the genome. Application of S allows extracting a larger number of specific probes, as compared to using only binding energy. Thus, we showed that high values of specific and cross-hybridization signals are not mutually exclusive for probes with high values of binding energy and S. In this study, the application of a new set of sequence characteristics allows detection of probes that are highly specific to their targets for array design and other bio-techniques that require selection of specific probes.

DOI: 10.1371/journal.pone.0199162
PubMed: 29928000

Links to Exploration step

pubmed:29928000

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.</title>
<author>
<name sortKey="Matveeva, Olga V" sort="Matveeva, Olga V" uniqKey="Matveeva O" first="Olga V" last="Matveeva">Olga V. Matveeva</name>
<affiliation>
<nlm:affiliation>Biopolymer Design LLC, Acton, Massachusetts, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ogurtsov, Aleksey Y" sort="Ogurtsov, Aleksey Y" uniqKey="Ogurtsov A" first="Aleksey Y" last="Ogurtsov">Aleksey Y. Ogurtsov</name>
<affiliation>
<nlm:affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nazipova, Nafisa N" sort="Nazipova, Nafisa N" uniqKey="Nazipova N" first="Nafisa N" last="Nazipova">Nafisa N. Nazipova</name>
<affiliation>
<nlm:affiliation>Institute of Mathematical Problems of Biology, RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shabalina, Svetlana A" sort="Shabalina, Svetlana A" uniqKey="Shabalina S" first="Svetlana A" last="Shabalina">Svetlana A. Shabalina</name>
<affiliation>
<nlm:affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29928000</idno>
<idno type="pmid">29928000</idno>
<idno type="doi">10.1371/journal.pone.0199162</idno>
<idno type="wicri:Area/PubMed/Corpus">000859</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000859</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.</title>
<author>
<name sortKey="Matveeva, Olga V" sort="Matveeva, Olga V" uniqKey="Matveeva O" first="Olga V" last="Matveeva">Olga V. Matveeva</name>
<affiliation>
<nlm:affiliation>Biopolymer Design LLC, Acton, Massachusetts, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ogurtsov, Aleksey Y" sort="Ogurtsov, Aleksey Y" uniqKey="Ogurtsov A" first="Aleksey Y" last="Ogurtsov">Aleksey Y. Ogurtsov</name>
<affiliation>
<nlm:affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nazipova, Nafisa N" sort="Nazipova, Nafisa N" uniqKey="Nazipova N" first="Nafisa N" last="Nazipova">Nafisa N. Nazipova</name>
<affiliation>
<nlm:affiliation>Institute of Mathematical Problems of Biology, RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shabalina, Svetlana A" sort="Shabalina, Svetlana A" uniqKey="Shabalina S" first="Svetlana A" last="Shabalina">Svetlana A. Shabalina</name>
<affiliation>
<nlm:affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Databases, Genetic</term>
<term>Genome</term>
<term>Humans</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Databases, Genetic</term>
<term>Genome</term>
<term>Humans</term>
<term>Nucleic Acid Hybridization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Off-target oligoprobe's interaction with partially complementary nucleotide sequences represents a problem for many bio-techniques. The goal of the study was to identify oligoprobe sequence characteristics that control the ratio between on-target and off-target hybridization. To understand the complex interplay between specific and genome-wide off-target (cross-hybridization) signals, we analyzed a database derived from genomic comparison hybridization experiments performed with an Affymetrix tiling array. The database included two types of probes with signals derived from (i) a combination of specific signal and cross-hybridization and (ii) genomic cross-hybridization only. All probes from the database were grouped into bins according to their sequence characteristics, where both hybridization signals were averaged separately. For selection of specific probes, we analyzed the following sequence characteristics: vulnerability to self-folding, nucleotide composition bias, numbers of G nucleotides and GGG-blocks, and occurrence of probe's k-mers in the human genome. Increases in bin ranges for these characteristics are simultaneously accompanied by a decrease in hybridization specificity-the ratio between specific and cross-hybridization signals. However, both averaged hybridization signals exhibit growing trends along with an increase of probes' binding energy, where the hybridization specific signal increases significantly faster in comparison to the cross-hybridization. The same trend is evident for the S function, which serves as a combined evaluation of probe binding energy and occurrence of probe's k-mers in the genome. Application of S allows extracting a larger number of specific probes, as compared to using only binding energy. Thus, we showed that high values of specific and cross-hybridization signals are not mutually exclusive for probes with high values of binding energy and S. In this study, the application of a new set of sequence characteristics allows detection of probes that are highly specific to their targets for array design and other bio-techniques that require selection of specific probes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29928000</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.</ArticleTitle>
<Pagination>
<MedlinePgn>e0199162</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0199162</ELocationID>
<Abstract>
<AbstractText>Off-target oligoprobe's interaction with partially complementary nucleotide sequences represents a problem for many bio-techniques. The goal of the study was to identify oligoprobe sequence characteristics that control the ratio between on-target and off-target hybridization. To understand the complex interplay between specific and genome-wide off-target (cross-hybridization) signals, we analyzed a database derived from genomic comparison hybridization experiments performed with an Affymetrix tiling array. The database included two types of probes with signals derived from (i) a combination of specific signal and cross-hybridization and (ii) genomic cross-hybridization only. All probes from the database were grouped into bins according to their sequence characteristics, where both hybridization signals were averaged separately. For selection of specific probes, we analyzed the following sequence characteristics: vulnerability to self-folding, nucleotide composition bias, numbers of G nucleotides and GGG-blocks, and occurrence of probe's k-mers in the human genome. Increases in bin ranges for these characteristics are simultaneously accompanied by a decrease in hybridization specificity-the ratio between specific and cross-hybridization signals. However, both averaged hybridization signals exhibit growing trends along with an increase of probes' binding energy, where the hybridization specific signal increases significantly faster in comparison to the cross-hybridization. The same trend is evident for the S function, which serves as a combined evaluation of probe binding energy and occurrence of probe's k-mers in the genome. Application of S allows extracting a larger number of specific probes, as compared to using only binding energy. Thus, we showed that high values of specific and cross-hybridization signals are not mutually exclusive for probes with high values of binding energy and S. In this study, the application of a new set of sequence characteristics allows detection of probes that are highly specific to their targets for array design and other bio-techniques that require selection of specific probes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matveeva</LastName>
<ForeName>Olga V</ForeName>
<Initials>OV</Initials>
<AffiliationInfo>
<Affiliation>Biopolymer Design LLC, Acton, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ogurtsov</LastName>
<ForeName>Aleksey Y</ForeName>
<Initials>AY</Initials>
<AffiliationInfo>
<Affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nazipova</LastName>
<ForeName>Nafisa N</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>Institute of Mathematical Problems of Biology, RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shabalina</LastName>
<ForeName>Svetlana A</ForeName>
<Initials>SA</Initials>
<Identifier Source="ORCID">0000-0002-3774-819X</Identifier>
<AffiliationInfo>
<Affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="Y">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The commercial affiliation Biopolymer Design LLC does not alter our adherence to PLOS ONE policies on sharing data and materials.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29928000</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0199162</ArticleId>
<ArticleId IdType="pii">PONE-D-18-06956</ArticleId>
<ArticleId IdType="pmc">PMC6013149</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BioData Min. 2010 Apr 29;3(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20429935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Dec 05;13:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23216884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Apr 27;11:207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20423484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Dec 15;24(24):2887-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2016 Jun 13;9:305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27295952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2013 Feb 27;6:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23445545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 2015 Feb 15;64:411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25280340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2009 May;8(3):199-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Dec 18;9:613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19094220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Sep 1;31(17):4989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Nov 17;4(11):e7862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 11;9(3):e91295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24618910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 27;13:737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23270536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microarrays (Basel). 2014 Dec 16;3(4):322-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27600351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 May 24;33(9):e84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15914663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2012 Aug 29;3:163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Sep 1;32(17):i552-i558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27587674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 20;5(4):e10180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20422034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2008 Aug 29;3:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18759985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Apr 8;18(1):286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28390408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jan 1;25(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Aug 1;28(15):2862-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Mar 1;30(5):1233-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jul 1;23(13):i195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17646297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(7):e53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Chem. 2007 Apr;31(2):92-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17387043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 2008 May;45(5):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2015 Sep 03;10:46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26335588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jun;38(11):e121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2009 May;10(3):259-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19359259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jul;39(7 Suppl):S16-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17597776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucleic Acids. 2010 Jul 07;2010:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20725627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1482-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2007 Dec 6;111(48):13583-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 15;31(14):4211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2009 May;8(3):174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:469-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Jul;21(7):818-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12794640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cytogenet. 2010 Apr 15;3:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jun 1;22(11):1317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2002 Mar 15;11(6):669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000859 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000859 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29928000
   |texte=   Sequence characteristics define trade-offs between on-target and genome-wide off-target hybridization of oligoprobes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:29928000" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021