Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells.

Identifieur interne : 000832 ( PubMed/Corpus ); précédent : 000831; suivant : 000833

Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells.

Auteurs : Shutoku Matsuyama ; Kazuya Shirato ; Miyuki Kawase ; Yutaka Terada ; Kengo Kawachi ; Shuetsu Fukushi ; Wataru Kamitani

Source :

RBID : pubmed:30021905

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host cellular proteases to enter cells. A previous report shows that furin, which is distributed mainly in the Golgi apparatus and cycled to the cell surface and endosomes, proteolytically activates the MERS-CoV spike (S) protein following receptor binding to mediate fusion between the viral and cellular membranes. In this study, we reexamined furin usage by MERS-CoV using a real-time PCR-based virus cell entry assay after inhibition of cellular proteases. We found that the furin inhibitor dec-RVKR-CMK blocked entry of MERS-CoV harboring an S protein lacking furin cleavage sites; it even blocked entry into furin-deficient LoVo cells. In addition, dec-RVKR-CMK inhibited not only the enzymatic activity of furin but also those of cathepsin L, cathepsin B, trypsin, papain, and TMPRSS2. Furthermore, a virus cell entry assay and a cell-cell fusion assay provided no evidence that the S protein was activated by exogenous furin. Therefore, we conclude that furin does not play a role in entry of MERS-CoV into cells and that the inhibitory effect of dec-RVKR-CMK is specific for TMPRSS2 and cathepsin L rather than furin.IMPORTANCE Previous studies using the furin inhibitor dec-RVKR-CMK suggest that MERS-CoV utilizes a cellular protease, furin, to activate viral glycoproteins during cell entry. However, we found that dec-RVKR-CMK inhibits not only furin but also other proteases. Furthermore, we found no evidence that MERS-CoV uses furin. These findings suggest that previous studies in the virology field based on dec-RVKR-CMK should be reexamined carefully. Here we describe appropriate experiments that can be used to assess the effect of protease inhibitors on virus cell entry.

DOI: 10.1128/JVI.00683-18
PubMed: 30021905

Links to Exploration step

pubmed:30021905

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells.</title>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan matuyama@nih.go.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawase, Miyuki" sort="Kawase, Miyuki" uniqKey="Kawase M" first="Miyuki" last="Kawase">Miyuki Kawase</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Terada, Yutaka" sort="Terada, Yutaka" uniqKey="Terada Y" first="Yutaka" last="Terada">Yutaka Terada</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawachi, Kengo" sort="Kawachi, Kengo" uniqKey="Kawachi K" first="Kengo" last="Kawachi">Kengo Kawachi</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<affiliation>
<nlm:affiliation>Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kamitani, Wataru" sort="Kamitani, Wataru" uniqKey="Kamitani W" first="Wataru" last="Kamitani">Wataru Kamitani</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30021905</idno>
<idno type="pmid">30021905</idno>
<idno type="doi">10.1128/JVI.00683-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000832</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000832</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells.</title>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan matuyama@nih.go.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawase, Miyuki" sort="Kawase, Miyuki" uniqKey="Kawase M" first="Miyuki" last="Kawase">Miyuki Kawase</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Terada, Yutaka" sort="Terada, Yutaka" uniqKey="Terada Y" first="Yutaka" last="Terada">Yutaka Terada</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawachi, Kengo" sort="Kawachi, Kengo" uniqKey="Kawachi K" first="Kengo" last="Kawachi">Kengo Kawachi</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<affiliation>
<nlm:affiliation>Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kamitani, Wataru" sort="Kamitani, Wataru" uniqKey="Kamitani W" first="Wataru" last="Kamitani">Wataru Kamitani</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Chloromethyl Ketones (pharmacology)</term>
<term>Animals</term>
<term>Cathepsin B (antagonists & inhibitors)</term>
<term>Cathepsin B (genetics)</term>
<term>Cathepsin B (metabolism)</term>
<term>Cathepsin L (antagonists & inhibitors)</term>
<term>Cathepsin L (genetics)</term>
<term>Cathepsin L (metabolism)</term>
<term>Chlorocebus aethiops</term>
<term>Furin (antagonists & inhibitors)</term>
<term>Furin (genetics)</term>
<term>Furin (metabolism)</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (metabolism)</term>
<term>Papain (antagonists & inhibitors)</term>
<term>Papain (genetics)</term>
<term>Papain (metabolism)</term>
<term>Proteolysis</term>
<term>Serine Endopeptidases (genetics)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Vero Cells</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Cathepsin B</term>
<term>Cathepsin L</term>
<term>Furin</term>
<term>Papain</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cathepsin B</term>
<term>Cathepsin L</term>
<term>Furin</term>
<term>Papain</term>
<term>Serine Endopeptidases</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cathepsin B</term>
<term>Cathepsin L</term>
<term>Furin</term>
<term>Papain</term>
<term>Serine Endopeptidases</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Amino Acid Chloromethyl Ketones</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Humans</term>
<term>Proteolysis</term>
<term>Vero Cells</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host cellular proteases to enter cells. A previous report shows that furin, which is distributed mainly in the Golgi apparatus and cycled to the cell surface and endosomes, proteolytically activates the MERS-CoV spike (S) protein following receptor binding to mediate fusion between the viral and cellular membranes. In this study, we reexamined furin usage by MERS-CoV using a real-time PCR-based virus cell entry assay after inhibition of cellular proteases. We found that the furin inhibitor dec-RVKR-CMK blocked entry of MERS-CoV harboring an S protein lacking furin cleavage sites; it even blocked entry into furin-deficient LoVo cells. In addition, dec-RVKR-CMK inhibited not only the enzymatic activity of furin but also those of cathepsin L, cathepsin B, trypsin, papain, and TMPRSS2. Furthermore, a virus cell entry assay and a cell-cell fusion assay provided no evidence that the S protein was activated by exogenous furin. Therefore, we conclude that furin does not play a role in entry of MERS-CoV into cells and that the inhibitory effect of dec-RVKR-CMK is specific for TMPRSS2 and cathepsin L rather than furin.
<b>IMPORTANCE</b>
Previous studies using the furin inhibitor dec-RVKR-CMK suggest that MERS-CoV utilizes a cellular protease, furin, to activate viral glycoproteins during cell entry. However, we found that dec-RVKR-CMK inhibits not only furin but also other proteases. Furthermore, we found no evidence that MERS-CoV uses furin. These findings suggest that previous studies in the virology field based on dec-RVKR-CMK should be reexamined carefully. Here we describe appropriate experiments that can be used to assess the effect of protease inhibitors on virus cell entry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30021905</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00683-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00683-18</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host cellular proteases to enter cells. A previous report shows that furin, which is distributed mainly in the Golgi apparatus and cycled to the cell surface and endosomes, proteolytically activates the MERS-CoV spike (S) protein following receptor binding to mediate fusion between the viral and cellular membranes. In this study, we reexamined furin usage by MERS-CoV using a real-time PCR-based virus cell entry assay after inhibition of cellular proteases. We found that the furin inhibitor dec-RVKR-CMK blocked entry of MERS-CoV harboring an S protein lacking furin cleavage sites; it even blocked entry into furin-deficient LoVo cells. In addition, dec-RVKR-CMK inhibited not only the enzymatic activity of furin but also those of cathepsin L, cathepsin B, trypsin, papain, and TMPRSS2. Furthermore, a virus cell entry assay and a cell-cell fusion assay provided no evidence that the S protein was activated by exogenous furin. Therefore, we conclude that furin does not play a role in entry of MERS-CoV into cells and that the inhibitory effect of dec-RVKR-CMK is specific for TMPRSS2 and cathepsin L rather than furin.
<b>IMPORTANCE</b>
Previous studies using the furin inhibitor dec-RVKR-CMK suggest that MERS-CoV utilizes a cellular protease, furin, to activate viral glycoproteins during cell entry. However, we found that dec-RVKR-CMK inhibits not only furin but also other proteases. Furthermore, we found no evidence that MERS-CoV uses furin. These findings suggest that previous studies in the virology field based on dec-RVKR-CMK should be reexamined carefully. Here we describe appropriate experiments that can be used to assess the effect of protease inhibitors on virus cell entry.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matsuyama</LastName>
<ForeName>Shutoku</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan matuyama@nih.go.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shirato</LastName>
<ForeName>Kazuya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kawase</LastName>
<ForeName>Miyuki</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Terada</LastName>
<ForeName>Yutaka</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kawachi</LastName>
<ForeName>Kengo</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fukushi</LastName>
<ForeName>Shuetsu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kamitani</LastName>
<ForeName>Wataru</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000590">Amino Acid Chloromethyl Ketones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C460143">decanoylRVKRchloromethylketone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="C421305">TMPRSS2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.75</RegistryNumber>
<NameOfSubstance UI="C468731">FURIN protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.75</RegistryNumber>
<NameOfSubstance UI="D045683">Furin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.1</RegistryNumber>
<NameOfSubstance UI="C533912">CTSB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.1</RegistryNumber>
<NameOfSubstance UI="D002401">Cathepsin B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.15</RegistryNumber>
<NameOfSubstance UI="C534281">CTSL protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.15</RegistryNumber>
<NameOfSubstance UI="D056668">Cathepsin L</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.2</RegistryNumber>
<NameOfSubstance UI="D010206">Papain</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000590" MajorTopicYN="N">Amino Acid Chloromethyl Ketones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002401" MajorTopicYN="N">Cathepsin B</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056668" MajorTopicYN="N">Cathepsin L</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045683" MajorTopicYN="N">Furin</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010206" MajorTopicYN="N">Papain</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="Y">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">TMPRSS2</Keyword>
<Keyword MajorTopicYN="Y">cathepsin L</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">dec-RVKR-CMK</Keyword>
<Keyword MajorTopicYN="Y">furin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30021905</ArticleId>
<ArticleId IdType="pii">JVI.00683-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00683-18</ArticleId>
<ArticleId IdType="pmc">PMC6146822</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol Concepts. 2011 Oct 1;2(5):421-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2005 Nov;83(11):844-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16215768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2016 Jun;17(6):593-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Mar 15;211(6):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25057042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2015 Sep;160(9):2293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26138557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1993 Sep 15;195(2):1019-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7690548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Oct;3(10):753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12360192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Nov;83(21):11133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Sep;87(17):9953-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 5;284(23):15729-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 2008 Apr;10(4):363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2016 Oct 21;60(11):6532-6539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27550352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 3;270(44):26565-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2017 Sep 15;140:8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28456517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 22;287(26):21992-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 21;12(6):e0179177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28636671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):6048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Aug;94(Pt 8):1749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2017 Nov;511:95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28843094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000832 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000832 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30021905
   |texte=   Middle East Respiratory Syndrome Coronavirus Spike Protein Is Not Activated Directly by Cellular Furin during Viral Entry into Target Cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30021905" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021