Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential Effects of β3 - versus β2 -Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides.

Identifieur interne : 000792 ( PubMed/Corpus ); précédent : 000791; suivant : 000793

Differential Effects of β3 - versus β2 -Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides.

Auteurs : Geoffrey A. Eddinger ; Samuel H. Gellman

Source :

RBID : pubmed:30161284

English descriptors

Abstract

Oligomers containing α- and β-amino acid residues (α/β-peptides) have been shown to mimic the α-helical conformation of conventional peptides when the unnatural residues are derived from β3 -amino acids or cyclic β-amino acids, but the impact of incorporating β2 residues has received little attention. The effects of β2 residues on the conformation and recognition behavior of α/β-peptides that mimic an isolated α-helix were investigated. This effort has focused on 26-mers based on the Bim BH3 domain; a set of isomers with identical α/β backbones that differ only in the placement of certain side chains along the backbone (β3 vs. β2 substitution) was compared. Circular dichroism data suggest that β2 residues can be helix-destabilizing relative to β3 residues, although the size of this effect seems to depend on side chain identity. Binding data show that β3 →β2 substitution at sites that contact a partner protein, Bcl-xL , can influence affinity in a way that transcends effects on helicity.

DOI: 10.1002/anie.201806909
PubMed: 30161284

Links to Exploration step

pubmed:30161284

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential Effects of β
<sup>3</sup>
- versus β
<sup>2</sup>
-Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides.</title>
<author>
<name sortKey="Eddinger, Geoffrey A" sort="Eddinger, Geoffrey A" uniqKey="Eddinger G" first="Geoffrey A" last="Eddinger">Geoffrey A. Eddinger</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gellman, Samuel H" sort="Gellman, Samuel H" uniqKey="Gellman S" first="Samuel H" last="Gellman">Samuel H. Gellman</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30161284</idno>
<idno type="pmid">30161284</idno>
<idno type="doi">10.1002/anie.201806909</idno>
<idno type="wicri:Area/PubMed/Corpus">000792</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000792</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential Effects of β
<sup>3</sup>
- versus β
<sup>2</sup>
-Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides.</title>
<author>
<name sortKey="Eddinger, Geoffrey A" sort="Eddinger, Geoffrey A" uniqKey="Eddinger G" first="Geoffrey A" last="Eddinger">Geoffrey A. Eddinger</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gellman, Samuel H" sort="Gellman, Samuel H" uniqKey="Gellman S" first="Samuel H" last="Gellman">Samuel H. Gellman</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Angewandte Chemie (International ed. in English)</title>
<idno type="eISSN">1521-3773</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acids (chemistry)</term>
<term>Apoptosis Regulatory Proteins (metabolism)</term>
<term>Circular Dichroism</term>
<term>Peptides (chemistry)</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Structure, Secondary</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amino Acids</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Apoptosis Regulatory Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Circular Dichroism</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Structure, Secondary</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oligomers containing α- and β-amino acid residues (α/β-peptides) have been shown to mimic the α-helical conformation of conventional peptides when the unnatural residues are derived from β
<sup>3</sup>
-amino acids or cyclic β-amino acids, but the impact of incorporating β
<sup>2</sup>
residues has received little attention. The effects of β
<sup>2</sup>
residues on the conformation and recognition behavior of α/β-peptides that mimic an isolated α-helix were investigated. This effort has focused on 26-mers based on the Bim BH3 domain; a set of isomers with identical α/β backbones that differ only in the placement of certain side chains along the backbone (β
<sup>3</sup>
vs. β
<sup>2</sup>
substitution) was compared. Circular dichroism data suggest that β
<sup>2</sup>
residues can be helix-destabilizing relative to β
<sup>3</sup>
residues, although the size of this effect seems to depend on side chain identity. Binding data show that β
<sup>3</sup>
→β
<sup>2</sup>
substitution at sites that contact a partner protein, Bcl-x
<sub>L</sub>
, can influence affinity in a way that transcends effects on helicity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30161284</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1521-3773</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>42</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Angewandte Chemie (International ed. in English)</Title>
<ISOAbbreviation>Angew. Chem. Int. Ed. Engl.</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential Effects of β
<sup>3</sup>
- versus β
<sup>2</sup>
-Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides.</ArticleTitle>
<Pagination>
<MedlinePgn>13829-13832</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/anie.201806909</ELocationID>
<Abstract>
<AbstractText>Oligomers containing α- and β-amino acid residues (α/β-peptides) have been shown to mimic the α-helical conformation of conventional peptides when the unnatural residues are derived from β
<sup>3</sup>
-amino acids or cyclic β-amino acids, but the impact of incorporating β
<sup>2</sup>
residues has received little attention. The effects of β
<sup>2</sup>
residues on the conformation and recognition behavior of α/β-peptides that mimic an isolated α-helix were investigated. This effort has focused on 26-mers based on the Bim BH3 domain; a set of isomers with identical α/β backbones that differ only in the placement of certain side chains along the backbone (β
<sup>3</sup>
vs. β
<sup>2</sup>
substitution) was compared. Circular dichroism data suggest that β
<sup>2</sup>
residues can be helix-destabilizing relative to β
<sup>3</sup>
residues, although the size of this effect seems to depend on side chain identity. Binding data show that β
<sup>3</sup>
→β
<sup>2</sup>
substitution at sites that contact a partner protein, Bcl-x
<sub>L</sub>
, can influence affinity in a way that transcends effects on helicity.</AbstractText>
<CopyrightInformation>© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eddinger</LastName>
<ForeName>Geoffrey A</ForeName>
<Initials>GA</Initials>
<Identifier Source="ORCID">0000-0002-3165-8089</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gellman</LastName>
<ForeName>Samuel H</ForeName>
<Initials>SH</Initials>
<Identifier Source="ORCID">0000-0001-5617-0058</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01GM056414</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 OD020022</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM061238</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM056414</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM061238</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR024601</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Angew Chem Int Ed Engl</MedlineTA>
<NlmUniqueID>0370543</NlmUniqueID>
<ISSNLinking>1433-7851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051017">Apoptosis Regulatory Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C118024">BLID protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051017" MajorTopicYN="N">Apoptosis Regulatory Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">circular dichroism</Keyword>
<Keyword MajorTopicYN="Y">peptides</Keyword>
<Keyword MajorTopicYN="Y">protein-protein interactions</Keyword>
<Keyword MajorTopicYN="Y">α-helix mimicry</Keyword>
<Keyword MajorTopicYN="Y">β2-amino acids</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30161284</ArticleId>
<ArticleId IdType="doi">10.1002/anie.201806909</ArticleId>
<ArticleId IdType="pmc">PMC6330212</ArticleId>
<ArticleId IdType="mid">NIHMS1002350</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Org Biomol Chem. 2010 May 21;8(10):2344-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem Lett. 2014 Feb 1;24(3):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24433858</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(24):4318-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2007 Jan 10;129(1):139-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17199293</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Commun (Camb). 2016 Mar 7;52(19):3789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26853882</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2011 Sep 5;12(13):2025-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21744457</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1998 Jan 16;275(2):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466915</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2008 Jan 28;180(2):341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18209102</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2012 Jan 11;134(1):315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22040025</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2017 May 31;139(21):7363-7369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28480699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem. 2013 Mar;5(3):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Chem Biol. 2015 Jun 19;10(6):1362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25798993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 2004;76(3):206-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148683</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2011 May 18;133(19):7336-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21520956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Sci. 2015 Apr 1;6(4):2434-2443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29308155</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2007 May 9;129(18):6050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17439122</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Mar 18;286(11):9382-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148306</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Chem Biol. 2015 Jul 17;10(7):1667-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25946900</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2013 Feb;19(2):202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23291630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2006 Feb 15;128(6):1995-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16464101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14751-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2004 Aug 11;126(31):9468-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15291512</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2011 Sep 14;133(36):14220-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2013;523:407-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2013 Sep 2;14(13):1564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23929624</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Br J Pharmacol. 2014 Jul;171(13):3132-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24628305</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11096-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27467859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2015 Sep 9;137(35):11365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Sep 3;305(5689):1466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2017 Apr;16(4):273-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28209992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2018 Aug 1;140(30):9396-9399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022665</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2008 Jul;17(7):1232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2005 Oct 14;44(40):6525-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172999</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9816-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26136402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Pharmacokinet. 2013 Oct;52(10):855-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719681</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Pharmacol Sci. 2016 Aug;37(8):702-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27267699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Jul 27;54(31):8896-927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26119925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2010 May;10(5):301-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20414204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acc Chem Res. 2008 Oct;41(10):1289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18630933</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Chem Biol. 2015 Feb;24:38-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461722</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2016 Nov 10;59(21):9599-9621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27362955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2014 Sep 18;21(9):1102-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25237857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Commun (Camb). 2011 Jun 7;47(21):5933-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21483969</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Chem Biol. 2016 May 20;11(5):1238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26854535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2016 Aug;15(8):533-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27050677</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Org Lett. 2010 Apr 2;12(7):1588-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20196543</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000792 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000792 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30161284
   |texte=   Differential Effects of β3 - versus β2 -Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3-Derived α/β-Peptides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30161284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021