Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lysosomal Proteases Are a Determinant of Coronavirus Tropism.

Identifieur interne : 000769 ( PubMed/Corpus ); précédent : 000768; suivant : 000770

Lysosomal Proteases Are a Determinant of Coronavirus Tropism.

Auteurs : Yuan Zheng ; Jian Shang ; Yang Yang ; Chang Liu ; Yushun Wan ; Qibin Geng ; Michelle Wang ; Ralph Baric ; Fang Li

Source :

RBID : pubmed:30258004

English descriptors

Abstract

Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.IMPORTANCE Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses.

DOI: 10.1128/JVI.01504-18
PubMed: 30258004

Links to Exploration step

pubmed:30258004

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lysosomal Proteases Are a Determinant of Coronavirus Tropism.</title>
<author>
<name sortKey="Zheng, Yuan" sort="Zheng, Yuan" uniqKey="Zheng Y" first="Yuan" last="Zheng">Yuan Zheng</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Jian" sort="Shang, Jian" uniqKey="Shang J" first="Jian" last="Shang">Jian Shang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang" sort="Liu, Chang" uniqKey="Liu C" first="Chang" last="Liu">Chang Liu</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Yushun" sort="Wan, Yushun" uniqKey="Wan Y" first="Yushun" last="Wan">Yushun Wan</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geng, Qibin" sort="Geng, Qibin" uniqKey="Geng Q" first="Qibin" last="Geng">Qibin Geng</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Michelle" sort="Wang, Michelle" uniqKey="Wang M" first="Michelle" last="Wang">Michelle Wang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA lifang@umn.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30258004</idno>
<idno type="pmid">30258004</idno>
<idno type="doi">10.1128/JVI.01504-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000769</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000769</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lysosomal Proteases Are a Determinant of Coronavirus Tropism.</title>
<author>
<name sortKey="Zheng, Yuan" sort="Zheng, Yuan" uniqKey="Zheng Y" first="Yuan" last="Zheng">Yuan Zheng</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shang, Jian" sort="Shang, Jian" uniqKey="Shang J" first="Jian" last="Shang">Jian Shang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yang" sort="Yang, Yang" uniqKey="Yang Y" first="Yang" last="Yang">Yang Yang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang" sort="Liu, Chang" uniqKey="Liu C" first="Chang" last="Liu">Chang Liu</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Yushun" sort="Wan, Yushun" uniqKey="Wan Y" first="Yushun" last="Wan">Yushun Wan</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geng, Qibin" sort="Geng, Qibin" uniqKey="Geng Q" first="Qibin" last="Geng">Qibin Geng</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Michelle" sort="Wang, Michelle" uniqKey="Wang M" first="Michelle" last="Wang">Michelle Wang</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
<affiliation>
<nlm:affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA lifang@umn.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Chiroptera</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (metabolism)</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Lysosomes (enzymology)</term>
<term>Middle East Respiratory Syndrome Coronavirus (metabolism)</term>
<term>Middle East Respiratory Syndrome Coronavirus (physiology)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>SARS Virus (metabolism)</term>
<term>SARS Virus (physiology)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Vero Cells</term>
<term>Viral Tropism</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Chiroptera</term>
<term>Chlorocebus aethiops</term>
<term>HEK293 Cells</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Vero Cells</term>
<term>Viral Tropism</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.
<b>IMPORTANCE</b>
Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30258004</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Lysosomal Proteases Are a Determinant of Coronavirus Tropism.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01504-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01504-18</ELocationID>
<Abstract>
<AbstractText>Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses.
<b>IMPORTANCE</b>
Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Zheng</LastName>
<ForeName>Yuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Shang</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Yang</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Yushun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Geng</LastName>
<ForeName>Qibin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA lifang@umn.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI089728</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI110700</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002685" MajorTopicYN="N">Chiroptera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056189" MajorTopicYN="N">Viral Tropism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">coronavirus spike protein</Keyword>
<Keyword MajorTopicYN="Y">lysosomal proteases</Keyword>
<Keyword MajorTopicYN="Y">species tropism</Keyword>
<Keyword MajorTopicYN="Y">tissue tropism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30258004</ArticleId>
<ArticleId IdType="pii">JVI.01504-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01504-18</ArticleId>
<ArticleId IdType="pmc">PMC6258935</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2010 Oct;155(10):1563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20567988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2016 Sep 12;214(6):653-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27621362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2012 Aug 03;3:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Nov 18;291(47):24779-24786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27729455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(15):8638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Jul;42(7):3196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2016 Sep 29;3(1):237-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Feb;89(4):1954-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2018 Jun 20;218(2):197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29346682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Sep;89(17):9119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26063432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1824(1):68-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22024571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:211-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16712436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 23;285(30):22758-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Sep 10;16(3):328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 03;8(10):e76469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Aug;8(8):622-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(9):4211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Mar 15;211(6):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25057042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Feb;4(2):258-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22470835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 19;9(11):e112060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 May 27;90(12):5586-5600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27030273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2016 Jun;20(6):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26818887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Sep 12;92(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30021905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(12):6134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:120-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Mar;19(3):456-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Clin Lab Sci. 2003 Jun;40(3):209-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Nov 17;4(11):e7870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Jun 13;92(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29669833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Hypertens. 2012;2012:307315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22121476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Jan 08;4(1):e00548-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Feb;2(2):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000769 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000769 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30258004
   |texte=   Lysosomal Proteases Are a Determinant of Coronavirus Tropism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30258004" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021