Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.

Identifieur interne : 000735 ( PubMed/Corpus ); précédent : 000734; suivant : 000736

A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.

Auteurs : Magali Jaillard ; Leandro Lima ; Maud Tournoud ; Pierre Mahé ; Alex Van Belkum ; Vincent Lacroix ; Laurent Jacob

Source :

RBID : pubmed:30419019

English descriptors

Abstract

Genome-wide association study (GWAS) methods applied to bacterial genomes have shown promising results for genetic marker discovery or detailed assessment of marker effect. Recently, alignment-free methods based on k-mer composition have proven their ability to explore the accessory genome. However, they lead to redundant descriptions and results which are sometimes hard to interpret. Here we introduce DBGWAS, an extended k-mer-based GWAS method producing interpretable genetic variants associated with distinct phenotypes. Relying on compacted De Bruijn graphs (cDBG), our method gathers cDBG nodes, identified by the association model, into subgraphs defined from their neighbourhood in the initial cDBG. DBGWAS is alignment-free and only requires a set of contigs and phenotypes. In particular, it does not require prior annotation or reference genomes. It produces subgraphs representing phenotype-associated genetic variants such as local polymorphisms and mobile genetic elements (MGE). It offers a graphical framework which helps interpret GWAS results. Importantly it is also computationally efficient-experiments took one hour and a half on average. We validated our method using antibiotic resistance phenotypes for three bacterial species. DBGWAS recovered known resistance determinants such as mutations in core genes in Mycobacterium tuberculosis, and genes acquired by horizontal transfer in Staphylococcus aureus and Pseudomonas aeruginosa-along with their MGE context. It also enabled us to formulate new hypotheses involving genetic variants not yet described in the antibiotic resistance literature. An open-source tool implementing DBGWAS is available at https://gitlab.com/leoisl/dbgwas.

DOI: 10.1371/journal.pgen.1007758
PubMed: 30419019

Links to Exploration step

pubmed:30419019

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.</title>
<author>
<name sortKey="Jaillard, Magali" sort="Jaillard, Magali" uniqKey="Jaillard M" first="Magali" last="Jaillard">Magali Jaillard</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lima, Leandro" sort="Lima, Leandro" uniqKey="Lima L" first="Leandro" last="Lima">Leandro Lima</name>
<affiliation>
<nlm:affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tournoud, Maud" sort="Tournoud, Maud" uniqKey="Tournoud M" first="Maud" last="Tournoud">Maud Tournoud</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mahe, Pierre" sort="Mahe, Pierre" uniqKey="Mahe P" first="Pierre" last="Mahé">Pierre Mahé</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Belkum, Alex" sort="Van Belkum, Alex" uniqKey="Van Belkum A" first="Alex" last="Van Belkum">Alex Van Belkum</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacroix, Vincent" sort="Lacroix, Vincent" uniqKey="Lacroix V" first="Vincent" last="Lacroix">Vincent Lacroix</name>
<affiliation>
<nlm:affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacob, Laurent" sort="Jacob, Laurent" uniqKey="Jacob L" first="Laurent" last="Jacob">Laurent Jacob</name>
<affiliation>
<nlm:affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30419019</idno>
<idno type="pmid">30419019</idno>
<idno type="doi">10.1371/journal.pgen.1007758</idno>
<idno type="wicri:Area/PubMed/Corpus">000735</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000735</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.</title>
<author>
<name sortKey="Jaillard, Magali" sort="Jaillard, Magali" uniqKey="Jaillard M" first="Magali" last="Jaillard">Magali Jaillard</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lima, Leandro" sort="Lima, Leandro" uniqKey="Lima L" first="Leandro" last="Lima">Leandro Lima</name>
<affiliation>
<nlm:affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tournoud, Maud" sort="Tournoud, Maud" uniqKey="Tournoud M" first="Maud" last="Tournoud">Maud Tournoud</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mahe, Pierre" sort="Mahe, Pierre" uniqKey="Mahe P" first="Pierre" last="Mahé">Pierre Mahé</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Belkum, Alex" sort="Van Belkum, Alex" uniqKey="Van Belkum A" first="Alex" last="Van Belkum">Alex Van Belkum</name>
<affiliation>
<nlm:affiliation>bioMérieux, Marcy l'Étoile, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacroix, Vincent" sort="Lacroix, Vincent" uniqKey="Lacroix V" first="Vincent" last="Lacroix">Vincent Lacroix</name>
<affiliation>
<nlm:affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacob, Laurent" sort="Jacob, Laurent" uniqKey="Jacob L" first="Laurent" last="Jacob">Laurent Jacob</name>
<affiliation>
<nlm:affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Graphics</term>
<term>DNA, Bacterial (genetics)</term>
<term>Databases, Genetic</term>
<term>Drug Resistance, Bacterial (genetics)</term>
<term>Genetic Variation</term>
<term>Genome, Bacterial</term>
<term>Genome-Wide Association Study (methods)</term>
<term>Genome-Wide Association Study (statistics & numerical data)</term>
<term>Interspersed Repetitive Sequences</term>
<term>Models, Genetic</term>
<term>Mycobacterium tuberculosis (drug effects)</term>
<term>Mycobacterium tuberculosis (genetics)</term>
<term>Phenotype</term>
<term>Pseudomonas aeruginosa (drug effects)</term>
<term>Pseudomonas aeruginosa (genetics)</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
<term>Staphylococcus aureus (drug effects)</term>
<term>Staphylococcus aureus (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
<term>Pseudomonas aeruginosa</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Bacterial</term>
<term>Mycobacterium tuberculosis</term>
<term>Pseudomonas aeruginosa</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genome-Wide Association Study</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Genome-Wide Association Study</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Graphics</term>
<term>Databases, Genetic</term>
<term>Genetic Variation</term>
<term>Genome, Bacterial</term>
<term>Interspersed Repetitive Sequences</term>
<term>Models, Genetic</term>
<term>Phenotype</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genome-wide association study (GWAS) methods applied to bacterial genomes have shown promising results for genetic marker discovery or detailed assessment of marker effect. Recently, alignment-free methods based on k-mer composition have proven their ability to explore the accessory genome. However, they lead to redundant descriptions and results which are sometimes hard to interpret. Here we introduce DBGWAS, an extended k-mer-based GWAS method producing interpretable genetic variants associated with distinct phenotypes. Relying on compacted De Bruijn graphs (cDBG), our method gathers cDBG nodes, identified by the association model, into subgraphs defined from their neighbourhood in the initial cDBG. DBGWAS is alignment-free and only requires a set of contigs and phenotypes. In particular, it does not require prior annotation or reference genomes. It produces subgraphs representing phenotype-associated genetic variants such as local polymorphisms and mobile genetic elements (MGE). It offers a graphical framework which helps interpret GWAS results. Importantly it is also computationally efficient-experiments took one hour and a half on average. We validated our method using antibiotic resistance phenotypes for three bacterial species. DBGWAS recovered known resistance determinants such as mutations in core genes in Mycobacterium tuberculosis, and genes acquired by horizontal transfer in Staphylococcus aureus and Pseudomonas aeruginosa-along with their MGE context. It also enabled us to formulate new hypotheses involving genetic variants not yet described in the antibiotic resistance literature. An open-source tool implementing DBGWAS is available at https://gitlab.com/leoisl/dbgwas.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30419019</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet.</ISOAbbreviation>
</Journal>
<ArticleTitle>A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007758</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1007758</ELocationID>
<Abstract>
<AbstractText>Genome-wide association study (GWAS) methods applied to bacterial genomes have shown promising results for genetic marker discovery or detailed assessment of marker effect. Recently, alignment-free methods based on k-mer composition have proven their ability to explore the accessory genome. However, they lead to redundant descriptions and results which are sometimes hard to interpret. Here we introduce DBGWAS, an extended k-mer-based GWAS method producing interpretable genetic variants associated with distinct phenotypes. Relying on compacted De Bruijn graphs (cDBG), our method gathers cDBG nodes, identified by the association model, into subgraphs defined from their neighbourhood in the initial cDBG. DBGWAS is alignment-free and only requires a set of contigs and phenotypes. In particular, it does not require prior annotation or reference genomes. It produces subgraphs representing phenotype-associated genetic variants such as local polymorphisms and mobile genetic elements (MGE). It offers a graphical framework which helps interpret GWAS results. Importantly it is also computationally efficient-experiments took one hour and a half on average. We validated our method using antibiotic resistance phenotypes for three bacterial species. DBGWAS recovered known resistance determinants such as mutations in core genes in Mycobacterium tuberculosis, and genes acquired by horizontal transfer in Staphylococcus aureus and Pseudomonas aeruginosa-along with their MGE context. It also enabled us to formulate new hypotheses involving genetic variants not yet described in the antibiotic resistance literature. An open-source tool implementing DBGWAS is available at https://gitlab.com/leoisl/dbgwas.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jaillard</LastName>
<ForeName>Magali</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-7010-1921</Identifier>
<AffiliationInfo>
<Affiliation>bioMérieux, Marcy l'Étoile, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lima</LastName>
<ForeName>Leandro</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0001-8976-2762</Identifier>
<AffiliationInfo>
<Affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>EPI ERABLE - Inria Grenoble, Rhône-Alpes, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tournoud</LastName>
<ForeName>Maud</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-2459-9831</Identifier>
<AffiliationInfo>
<Affiliation>bioMérieux, Marcy l'Étoile, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mahé</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>bioMérieux, Marcy l'Étoile, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Belkum</LastName>
<ForeName>Alex</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>bioMérieux, Marcy l'Étoile, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacroix</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>EPI ERABLE - Inria Grenoble, Rhône-Alpes, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jacob</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-7826-2719</Identifier>
<AffiliationInfo>
<Affiliation>Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003196" MajorTopicYN="N">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024881" MajorTopicYN="N">Drug Resistance, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="Y">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020071" MajorTopicYN="N">Interspersed Repetitive Sequences</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009169" MajorTopicYN="N">Mycobacterium tuberculosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011550" MajorTopicYN="N">Pseudomonas aeruginosa</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>I have read the journal’s policy and the authors of this manuscript have the following competing interests: MJ, MT, PM and AvB are employees of bioMérieux, a company that develops and sells diagnostic tests in the field of infectious diseases. However, the study was designed and executed in an open manner and the presented method as well as all data generated have been deposited in the public domain, also resulting in the current publication.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30419019</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1007758</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-18-01145</ArticleId>
<ArticleId IdType="pmc">PMC6258240</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Elife. 2018 Jun 13;7:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29897334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Mol Diagn. 2017 Mar;17(3):257-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28093921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D851-D860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29112715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Nov 15;31(22):3691-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26198102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2015 May 27;7(1):51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Nov 12;4:6874</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25387525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):810-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1994 Jan 15;115(2-3):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8138142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D535-D542</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Dec;53(12):4961-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19721075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Med. 2002;95 Suppl 41:22-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12216271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2015 Sep;1354:12-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26190223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D574-D580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2010 Dec;74(4):621-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2014 Apr;52(4):1182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Sep 16;7:12797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27633831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Nov 24;6(6):e01796-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26604259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2013 Oct;45(10):1255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Apr 04;1:16041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Jun 15;32(12):i201-i208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27307618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2012 Nov;67(11):2640-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22782487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):665-676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28360232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2016 Feb 11;5:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26870323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1995 Feb;39(2):369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7726500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):835-848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Aug 07;10(8):e1004547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25101644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2013 Oct;45(10):1183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Tuberc Lung Dis. 2000 May;4(5):441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10815738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2017 Aug;50(2):210-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28554735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Jan 08;44(2):226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22231483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2014 Nov 22;6(11):109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25593593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Feb 03;11(2):e0148367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26841043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Oct 15;30(20):2959-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24990603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Apr;11(4):407-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2018 Feb 5;14(2):e1005958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29401456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2017 May 1;41(3):354-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Nov 13;4(11):e7740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2016 Sep 1;194(5):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26910495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11923-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antibiotics (Basel). 2014 Jul 02;3(3):317-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2016 Feb;16(2):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Apr 14;15:107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24731071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Jun 20;17(1):132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27323842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):768-777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Aug 18;5(8):e12245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2014 Apr 30;6(5):1174-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24787619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Dec 21;6:10063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26686880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014;58(1):212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24145532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Jan 15;32(2):309-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26415722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 14;6:27930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27297683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Jan;59(1):427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25367914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2015 Jan;13(1):42-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2017 Jan;18(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Tuberc Lung Dis. 2000 May;4(5):481-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10815743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Dec 15;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Aug;14(8):353-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Oct;7(10):781-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 14;6(3):e17915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Jun 17;44(7):821-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 May;111(9):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12727914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 12;7(1):11262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28900144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Genomics. 2014;2014:123058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zentralbl Bakteriol. 1998 May;287(4):277-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9638861</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000735 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000735 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30419019
   |texte=   A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30419019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021