Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations.

Identifieur interne : 000592 ( PubMed/Corpus ); précédent : 000591; suivant : 000593

A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations.

Auteurs : Weiling Li ; Lin Lin ; Raunaq Malhotra ; Lei Yang ; Raj Acharya ; Mary Poss

Source :

RBID : pubmed:30921327

English descriptors

Abstract

Human Endogenous Retrovirus type K (HERV-K) is the only HERV known to be insertionally polymorphic; not all individuals have a retrovirus at a specific genomic location. It is possible that HERV-Ks contribute to human disease because people differ in both number and genomic location of these retroviruses. Indeed viral transcripts, proteins, and antibody against HERV-K are detected in cancers, auto-immune, and neurodegenerative diseases. However, attempts to link a polymorphic HERV-K with any disease have been frustrated in part because population prevalence of HERV-K provirus at each polymorphic site is lacking and it is challenging to identify closely related elements such as HERV-K from short read sequence data. We present an integrated and computationally robust approach that uses whole genome short read data to determine the occupation status at all sites reported to contain a HERV-K provirus. Our method estimates the proportion of fixed length genomic sequence (k-mers) from whole genome sequence data matching a reference set of k-mers unique to each HERV-K locus and applies mixture model-based clustering of these values to account for low depth sequence data. Our analysis of 1000 Genomes Project Data (KGP) reveals numerous differences among the five KGP super-populations in the prevalence of individual and co-occurring HERV-K proviruses; we provide a visualization tool to easily depict the proportion of the KGP populations with any combination of polymorphic HERV-K provirus. Further, because HERV-K is insertionally polymorphic, the genome burden of known polymorphic HERV-K is variable in humans; this burden is lowest in East Asian (EAS) individuals. Our study identifies population-specific sequence variation for HERV-K proviruses at several loci. We expect these resources will advance research on HERV-K contributions to human diseases.

DOI: 10.1371/journal.pcbi.1006564
PubMed: 30921327

Links to Exploration step

pubmed:30921327

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations.</title>
<author>
<name sortKey="Li, Weiling" sort="Li, Weiling" uniqKey="Li W" first="Weiling" last="Li">Weiling Li</name>
<affiliation>
<nlm:affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Lin" sort="Lin, Lin" uniqKey="Lin L" first="Lin" last="Lin">Lin Lin</name>
<affiliation>
<nlm:affiliation>Department of Statistics, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malhotra, Raunaq" sort="Malhotra, Raunaq" uniqKey="Malhotra R" first="Raunaq" last="Malhotra">Raunaq Malhotra</name>
<affiliation>
<nlm:affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
<affiliation>
<nlm:affiliation>Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Acharya, Raj" sort="Acharya, Raj" uniqKey="Acharya R" first="Raj" last="Acharya">Raj Acharya</name>
<affiliation>
<nlm:affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poss, Mary" sort="Poss, Mary" uniqKey="Poss M" first="Mary" last="Poss">Mary Poss</name>
<affiliation>
<nlm:affiliation>Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30921327</idno>
<idno type="pmid">30921327</idno>
<idno type="doi">10.1371/journal.pcbi.1006564</idno>
<idno type="wicri:Area/PubMed/Corpus">000592</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000592</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations.</title>
<author>
<name sortKey="Li, Weiling" sort="Li, Weiling" uniqKey="Li W" first="Weiling" last="Li">Weiling Li</name>
<affiliation>
<nlm:affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Lin" sort="Lin, Lin" uniqKey="Lin L" first="Lin" last="Lin">Lin Lin</name>
<affiliation>
<nlm:affiliation>Department of Statistics, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malhotra, Raunaq" sort="Malhotra, Raunaq" uniqKey="Malhotra R" first="Raunaq" last="Malhotra">Raunaq Malhotra</name>
<affiliation>
<nlm:affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
<affiliation>
<nlm:affiliation>Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Acharya, Raj" sort="Acharya, Raj" uniqKey="Acharya R" first="Raj" last="Acharya">Raj Acharya</name>
<affiliation>
<nlm:affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poss, Mary" sort="Poss, Mary" uniqKey="Poss M" first="Mary" last="Poss">Mary Poss</name>
<affiliation>
<nlm:affiliation>Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Continental Population Groups (genetics)</term>
<term>Endogenous Retroviruses (genetics)</term>
<term>Genetics, Population (methods)</term>
<term>Genome, Human (genetics)</term>
<term>Genome, Viral (genetics)</term>
<term>Genomics (methods)</term>
<term>Humans</term>
<term>Molecular Epidemiology</term>
<term>Proviruses (genetics)</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Continental Population Groups</term>
<term>Endogenous Retroviruses</term>
<term>Genome, Human</term>
<term>Genome, Viral</term>
<term>Proviruses</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetics, Population</term>
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Humans</term>
<term>Molecular Epidemiology</term>
<term>Software</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human Endogenous Retrovirus type K (HERV-K) is the only HERV known to be insertionally polymorphic; not all individuals have a retrovirus at a specific genomic location. It is possible that HERV-Ks contribute to human disease because people differ in both number and genomic location of these retroviruses. Indeed viral transcripts, proteins, and antibody against HERV-K are detected in cancers, auto-immune, and neurodegenerative diseases. However, attempts to link a polymorphic HERV-K with any disease have been frustrated in part because population prevalence of HERV-K provirus at each polymorphic site is lacking and it is challenging to identify closely related elements such as HERV-K from short read sequence data. We present an integrated and computationally robust approach that uses whole genome short read data to determine the occupation status at all sites reported to contain a HERV-K provirus. Our method estimates the proportion of fixed length genomic sequence (k-mers) from whole genome sequence data matching a reference set of k-mers unique to each HERV-K locus and applies mixture model-based clustering of these values to account for low depth sequence data. Our analysis of 1000 Genomes Project Data (KGP) reveals numerous differences among the five KGP super-populations in the prevalence of individual and co-occurring HERV-K proviruses; we provide a visualization tool to easily depict the proportion of the KGP populations with any combination of polymorphic HERV-K provirus. Further, because HERV-K is insertionally polymorphic, the genome burden of known polymorphic HERV-K is variable in humans; this burden is lowest in East Asian (EAS) individuals. Our study identifies population-specific sequence variation for HERV-K proviruses at several loci. We expect these resources will advance research on HERV-K contributions to human diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30921327</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations.</ArticleTitle>
<Pagination>
<MedlinePgn>e1006564</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1006564</ELocationID>
<Abstract>
<AbstractText>Human Endogenous Retrovirus type K (HERV-K) is the only HERV known to be insertionally polymorphic; not all individuals have a retrovirus at a specific genomic location. It is possible that HERV-Ks contribute to human disease because people differ in both number and genomic location of these retroviruses. Indeed viral transcripts, proteins, and antibody against HERV-K are detected in cancers, auto-immune, and neurodegenerative diseases. However, attempts to link a polymorphic HERV-K with any disease have been frustrated in part because population prevalence of HERV-K provirus at each polymorphic site is lacking and it is challenging to identify closely related elements such as HERV-K from short read sequence data. We present an integrated and computationally robust approach that uses whole genome short read data to determine the occupation status at all sites reported to contain a HERV-K provirus. Our method estimates the proportion of fixed length genomic sequence (k-mers) from whole genome sequence data matching a reference set of k-mers unique to each HERV-K locus and applies mixture model-based clustering of these values to account for low depth sequence data. Our analysis of 1000 Genomes Project Data (KGP) reveals numerous differences among the five KGP super-populations in the prevalence of individual and co-occurring HERV-K proviruses; we provide a visualization tool to easily depict the proportion of the KGP populations with any combination of polymorphic HERV-K provirus. Further, because HERV-K is insertionally polymorphic, the genome burden of known polymorphic HERV-K is variable in humans; this burden is lowest in East Asian (EAS) individuals. Our study identifies population-specific sequence variation for HERV-K proviruses at several loci. We expect these resources will advance research on HERV-K contributions to human diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Weiling</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-7464-1172</Identifier>
<AffiliationInfo>
<Affiliation>Department of Statistics, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malhotra</LastName>
<ForeName>Raunaq</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0002-7253-850X</Identifier>
<AffiliationInfo>
<Affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Acharya</LastName>
<ForeName>Raj</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poss</LastName>
<ForeName>Mary</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-4147-2410</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044469" MajorTopicYN="N">Continental Population Groups</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020077" MajorTopicYN="N">Endogenous Retroviruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015894" MajorTopicYN="N">Genome, Human</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017720" MajorTopicYN="N">Molecular Epidemiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011533" MajorTopicYN="N">Proviruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30921327</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1006564</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-18-01737</ArticleId>
<ArticleId IdType="pmc">PMC6456218</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 1999 Sep;7(9):350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10470042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2000 Oct 12;9(17):2563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):487-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11704760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2003 May;26(3):291-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Med. 2004 Dec;97(12):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1183-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16157677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Oct;79(19):12507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2006 Oct 03;3:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Jul;23(7):326-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17524519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(17):9437-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:709-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2009 Apr;47(4):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Dec 15;448(2):105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19577618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2010 Jan 15;126(2):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19795446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jun 30;11:410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20591181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2010 Aug;20(4):246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Feb;1812(2):162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Nov 24;143(5):837-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21111241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Vis Comput Graph. 2011 Dec;17(12):2301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2011 Nov 08;8:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22067224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Nov 29;13(1):36-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22124482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Mar 16;13(4):283-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22421730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 12;8(4):e60605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Rheumatol J. 2013 Mar 22;7:13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23750183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2013 Sep;35(9):794-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23864388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Aug 12;368(1626):20120504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23938753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2013 Sep 20;3:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24066280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Mar 12;15(3):255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24629332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2014 May;15(5):415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Sep 1;88(17):9529-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2014 Aug 12;11:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25112280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Mar 04;7(3):939-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25746218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2016 Jan;17(1):40-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26040910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Res. 2016 Feb;64(1):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26091722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2015 Sep 30;7(307):307ra153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26424568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26432246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>APMIS. 2016 Jan-Feb;124(1-2):67-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26818263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>APMIS. 2016 Jan-Feb;124(1-2):88-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26818264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2326-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27001843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 27;6:28710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27346230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 06;7:41960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28165048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2017 Oct 19;372(1732):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28893944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Oct 11;8:1986</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29075249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Feb 20;9:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29515547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 28;93(11):5177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Dec;72(12):9782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000592 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000592 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30921327
   |texte=   A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30921327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021