Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin.

Identifieur interne : 000540 ( PubMed/Corpus ); précédent : 000539; suivant : 000541

Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin.

Auteurs : Matthew P. Sullivan ; Stuart J. Morrow ; David C. Goldstone ; Christian G. Hartinger

Source :

RBID : pubmed:31087392

English descriptors

Abstract

Cisplatin and its second and third generation analogues are widely used in the treatment of cancer. To study their reactions with proteins, we present a method based on SDS-PAGE separation and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for platinum detection in the reaction between human serum albumin (HSA) and cisplatin. We developed matrix-matched standards of HSA/cisplatin mixtures and used them to quantify the amount of adducts formed at different HSA:cisplatin ratios. We noted that cisplatin incubation with HSA resulted in the formation of higher order HSA n-mers, depending on the amount of cisplatin added. This caused a depletion of the HSA dimer bands, while the majority of HSA was present as the monomer. Inducing the formation of such higher molecular weight species may have an impact on the mode of action of metallodrugs.

DOI: 10.1002/elps.201900070
PubMed: 31087392

Links to Exploration step

pubmed:31087392

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin.</title>
<author>
<name sortKey="Sullivan, Matthew P" sort="Sullivan, Matthew P" uniqKey="Sullivan M" first="Matthew P" last="Sullivan">Matthew P. Sullivan</name>
<affiliation>
<nlm:affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrow, Stuart J" sort="Morrow, Stuart J" uniqKey="Morrow S" first="Stuart J" last="Morrow">Stuart J. Morrow</name>
<affiliation>
<nlm:affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goldstone, David C" sort="Goldstone, David C" uniqKey="Goldstone D" first="David C" last="Goldstone">David C. Goldstone</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartinger, Christian G" sort="Hartinger, Christian G" uniqKey="Hartinger C" first="Christian G" last="Hartinger">Christian G. Hartinger</name>
<affiliation>
<nlm:affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31087392</idno>
<idno type="pmid">31087392</idno>
<idno type="doi">10.1002/elps.201900070</idno>
<idno type="wicri:Area/PubMed/Corpus">000540</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000540</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin.</title>
<author>
<name sortKey="Sullivan, Matthew P" sort="Sullivan, Matthew P" uniqKey="Sullivan M" first="Matthew P" last="Sullivan">Matthew P. Sullivan</name>
<affiliation>
<nlm:affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Morrow, Stuart J" sort="Morrow, Stuart J" uniqKey="Morrow S" first="Stuart J" last="Morrow">Stuart J. Morrow</name>
<affiliation>
<nlm:affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goldstone, David C" sort="Goldstone, David C" uniqKey="Goldstone D" first="David C" last="Goldstone">David C. Goldstone</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartinger, Christian G" sort="Hartinger, Christian G" uniqKey="Hartinger C" first="Christian G" last="Hartinger">Christian G. Hartinger</name>
<affiliation>
<nlm:affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Electrophoresis</title>
<idno type="eISSN">1522-2683</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antineoplastic Agents (analysis)</term>
<term>Antineoplastic Agents (chemistry)</term>
<term>Antineoplastic Agents (metabolism)</term>
<term>Cisplatin (analysis)</term>
<term>Cisplatin (chemistry)</term>
<term>Cisplatin (metabolism)</term>
<term>Humans</term>
<term>Lasers</term>
<term>Mass Spectrometry (methods)</term>
<term>Serum Albumin, Human (chemistry)</term>
<term>Serum Albumin, Human (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cisplatin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cisplatin</term>
<term>Serum Albumin, Human</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cisplatin</term>
<term>Serum Albumin, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Lasers</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cisplatin and its second and third generation analogues are widely used in the treatment of cancer. To study their reactions with proteins, we present a method based on SDS-PAGE separation and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for platinum detection in the reaction between human serum albumin (HSA) and cisplatin. We developed matrix-matched standards of HSA/cisplatin mixtures and used them to quantify the amount of adducts formed at different HSA:cisplatin ratios. We noted that cisplatin incubation with HSA resulted in the formation of higher order HSA n-mers, depending on the amount of cisplatin added. This caused a depletion of the HSA dimer bands, while the majority of HSA was present as the monomer. Inducing the formation of such higher molecular weight species may have an impact on the mode of action of metallodrugs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31087392</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-2683</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>18-19</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Electrophoresis</Title>
<ISOAbbreviation>Electrophoresis</ISOAbbreviation>
</Journal>
<ArticleTitle>Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin.</ArticleTitle>
<Pagination>
<MedlinePgn>2329-2335</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/elps.201900070</ELocationID>
<Abstract>
<AbstractText>Cisplatin and its second and third generation analogues are widely used in the treatment of cancer. To study their reactions with proteins, we present a method based on SDS-PAGE separation and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for platinum detection in the reaction between human serum albumin (HSA) and cisplatin. We developed matrix-matched standards of HSA/cisplatin mixtures and used them to quantify the amount of adducts formed at different HSA:cisplatin ratios. We noted that cisplatin incubation with HSA resulted in the formation of higher order HSA n-mers, depending on the amount of cisplatin added. This caused a depletion of the HSA dimer bands, while the majority of HSA was present as the monomer. Inducing the formation of such higher molecular weight species may have an impact on the mode of action of metallodrugs.</AbstractText>
<CopyrightInformation>© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sullivan</LastName>
<ForeName>Matthew P</ForeName>
<Initials>MP</Initials>
<Identifier Source="ORCID">0000-0003-4181-4249</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrow</LastName>
<ForeName>Stuart J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goldstone</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
<Identifier Source="ORCID">0000-0003-0069-9408</Identifier>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartinger</LastName>
<ForeName>Christian G</ForeName>
<Initials>CG</Initials>
<Identifier Source="ORCID">0000-0001-9806-0893</Identifier>
<AffiliationInfo>
<Affiliation>School of Chemical Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>University of Auckland</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Electrophoresis</MedlineTA>
<NlmUniqueID>8204476</NlmUniqueID>
<ISSNLinking>0173-0835</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q20Q21Q62J</RegistryNumber>
<NameOfSubstance UI="D002945">Cisplatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ZIF514RVZR</RegistryNumber>
<NameOfSubstance UI="D000075462">Serum Albumin, Human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002945" MajorTopicYN="N">Cisplatin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007834" MajorTopicYN="N">Lasers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000075462" MajorTopicYN="N">Serum Albumin, Human</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Anticancer agents</Keyword>
<Keyword MajorTopicYN="Y">Gel electrophoresis</Keyword>
<Keyword MajorTopicYN="Y">Human Serum albumin</Keyword>
<Keyword MajorTopicYN="Y">Laser ablation-inductively coupled plasma-mass spectrometry</Keyword>
<Keyword MajorTopicYN="Y">Metal complexes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31087392</ArticleId>
<ArticleId IdType="doi">10.1002/elps.201900070</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>5 References</Title>
<Reference>
<Citation>Arnesano, F., Natile, G., Coord. Chem. Rev. 2009, 253, 2070-2081.</Citation>
</Reference>
<Reference>
<Citation>Reedijk, J., Proc. Natl. Acad. Sci. USA 2003, 100, 3611-3616.</Citation>
</Reference>
<Reference>
<Citation>Ivanov, A. I., Christodoulou, J., Parkinson, J. A., Barnham, K. J., Tucker, A., Woodrow, J., Sadler, P. J., J. Biol. Chem. 1998, 273, 14721-14730.</Citation>
</Reference>
<Reference>
<Citation>Brabec, V., Kasparkova, J., Drug Resist. Updates 2002, 5, 147-161.</Citation>
</Reference>
<Reference>
<Citation>Janovska, E., Kleinwächter, V., Stud. Biophys. 1984, 103, 13-20.</Citation>
</Reference>
<Reference>
<Citation>Welters, M., Fichtinger-Schepman, A., Baan, R., Flens, M., Scheper, R., Braakhuis, B., Br. J. Cancer 1998, 77, 556.</Citation>
</Reference>
<Reference>
<Citation>Samimi, G., Safaei, R., Katano, K., Holzer, A. K., Rochdi, M., Tomioka, M., Goodman, M., Howell, S. B., Clin. Cancer Res. 2004, 10, 4661-4669.</Citation>
</Reference>
<Reference>
<Citation>Dyson, P. J., Sava, G., Dalton Trans. 2006, 1929-1933.</Citation>
</Reference>
<Reference>
<Citation>Jarvis, I. W. H., Meczes, E. L., Thomas, H. D., Edmondson, R. J., Veal, G. J., Boddy, A. V., Ottley, C. J., Pearson, D. G., Tilby, M. J., Biochem. Pharmacol. 2012, 83, 69-77.</Citation>
</Reference>
<Reference>
<Citation>Szpunar, J., Makarov, A., Pieper, T., Keppler, B. K., Łobiński, R., Anal. Chim. Acta 1999, 387, 135-144.</Citation>
</Reference>
<Reference>
<Citation>He, X., Carter, D. C., Nature 1992, 358, 209-215.</Citation>
</Reference>
<Reference>
<Citation>Luo, F. R., Wyrick, S. D., Chaney, S. G., J. Biochem. Mol. Toxicol. 1999, 13, 159-169.</Citation>
</Reference>
<Reference>
<Citation>Garcia Sar, D., Montes-Bayón, M., Blanco González, E., Sanz-Medel, A., J. Anal. At. Spectrom. 2006, 21, 861-868.</Citation>
</Reference>
<Reference>
<Citation>Groessl, M., Hartinger, C. G., Polec-Pawlak, K., Jarosz, M., Keppler, B. K., Electrophoresis 2008, 29, 2224-2232.</Citation>
</Reference>
<Reference>
<Citation>Groessl, M., Terenghi, M., Casini, A., Elviri, L., Lobinski, R., Dyson, P. J., J. Anal. At. Spectrom. 2010, 25, 305-313.</Citation>
</Reference>
<Reference>
<Citation>Bytzek, A. K., Boeck, K., Hermann, G., Hann, S., Keppler, B. K., Hartinger, C. G., Koellensperger, G., Metallomics 2011, 3, 1049-1055.</Citation>
</Reference>
<Reference>
<Citation>Grabmann, G., Meier, S. M., Scaffidi-Domianello, Y. Y., Galanski, M., Keppler, B. K., Hartinger, C. G., J. Chromatogr. A 2012, 1267, 156-161.</Citation>
</Reference>
<Reference>
<Citation>Bianga, J., Ballihaut, G., Pécheyran, C., Touat, Z., Preud'homme, H., Mounicou, S., Chavatte, L., Lobinski, R., Szpunar, J., J. Anal. At. Spectrom. 2012, 27, 25-32.</Citation>
</Reference>
<Reference>
<Citation>Moreno-Gordaliza, E., Esteban-Fernandez, D., Giesen, C., Lehmann, K., Lazaro, A., Tejedor, A., Scheler, C., Canas, B., Jakubowski, N., Linscheid, M. l. W., Gomez-Gomez, M. M., J. Anal. At. Spectrom. 2012, 27, 1474-1483.</Citation>
</Reference>
<Reference>
<Citation>Guidi, F., Modesti, A., Landini, I., Nobili, S., Mini, E., Bini, L., Puglia, M., Casini, A., Dyson, P. J., Gabbiani, C., Messori, L., J. Inorg. Biochem. 2013, 118, 94-99.</Citation>
</Reference>
<Reference>
<Citation>Bytzek, A. K., Koellensperger, G., Keppler, B. K. G. Hartinger, C., J. Inorg. Biochem. 2016, 160, 250-255.</Citation>
</Reference>
<Reference>
<Citation>Klose, M. H. M., Schöberl, A., Heffeter, P., Berger, W., Hartinger, C. G., Koellensperger, G., Meier-Menches, S. M., Keppler, B. K., Monatsh. Chem. 2018, 149, 1719-1726.</Citation>
</Reference>
<Reference>
<Citation>Becker, J. S., Zoriy, M. V., Przybylski, M., Becker, J. S., Int. J. Mass Spectrom. 2005, 242, 135-144.</Citation>
</Reference>
<Reference>
<Citation>Lobinski, R., Moulin, C., Ortega, R., Biochimie 2006, 88, 1591-1604.</Citation>
</Reference>
<Reference>
<Citation>Garijo Añorbe, M., Messerschmidt, J., Feldmann, I., Jakubowski, N., J. Anal. At. Spectrom. 2007, 22, 917-924.</Citation>
</Reference>
<Reference>
<Citation>Polatajko, A., Azzolini, M., Feldmann, I., Stuezel, T., Jakubowski, N., J. Anal. At. Spectrom. 2007, 22, 878-887.</Citation>
</Reference>
<Reference>
<Citation>Becker, J. S., Zoriy, M., Przybylski, M., Becker, J. S., J. Anal. At. Spectrom. 2007, 22, 63-68.</Citation>
</Reference>
<Reference>
<Citation>Hartinger, C. G., Keppler, B. K., Electrophoresis 2007, 28, 3436-3446.</Citation>
</Reference>
<Reference>
<Citation>Becker, J. S., Pozebon, D., Dressler, V. L., Lobinski, R., Becker, J. S., J. Anal. At. Spectrom. 2008, 23, 1076-1082.</Citation>
</Reference>
<Reference>
<Citation>Tsang, C. N., Bianga, J., Sun, H., Szpunar, J., Lobinski, R., Metallomics 2012, 4, 277-283.</Citation>
</Reference>
<Reference>
<Citation>Allardyce, C. S., Dyson, P. J., Abou-Shakra, F. R., Birtwistle, H., Coffey, J., Chem. Commun. 2001, 2708-2709.</Citation>
</Reference>
<Reference>
<Citation>Hsieh, Y. K., Jiang, P. S., Yang, B. S., Sun, T. Y., Peng, H. H., Wang, C. F., Anal. Bioanal. Chem. 2011, 401, 909-915.</Citation>
</Reference>
<Reference>
<Citation>Pozebon, D., Scheffler, G. L., Dressler, V. L., Nunes, M. A. G., J. Anal. At. Spectrom. 2014, 29, 2204-2228.</Citation>
</Reference>
<Reference>
<Citation>Egger, A. E., Theiner, S., Kornauth, C., Heffeter, P., Berger, W., Keppler, B. K., Hartinger, C. G., Metallomics 2014, 6, 1616-1625.</Citation>
</Reference>
<Reference>
<Citation>Theiner, S., Kornauth, C., Varbanov, H. P., Galanski, M., Van Schoonhoven, S., Heffeter, P., Berger, W., Egger, A. E., Keppler, B. K., Metallomics 2015, 7, 1256-1264.</Citation>
</Reference>
<Reference>
<Citation>Köppen, C., Reifschneider, O., Castanheira, I., Sperling, M., Karst, U., Ciarimboli, G., Metallomics 2015, 7, 1595-1603.</Citation>
</Reference>
<Reference>
<Citation>Egger, A. E., Kornauth, C., Haslik, W., Hann, S., Theiner, S., Bayer, G., Hartinger, C. G., Keppler, B. K., Pluschnig, U., Mader, R. M., Metallomics 2015, 7, 508-515.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Wang, H., Li, H., Sun, H., Dalton Trans. 2015, 44, 437-447.</Citation>
</Reference>
<Reference>
<Citation>Bishop, D. P., Clases, D., Fryer, F., Williams, E., Wilkins, S., Hare, D. J., Cole, N., Karst, U., Doble, P. A., J. Anal. At. Spectrom. 2016, 31, 197-202.</Citation>
</Reference>
<Reference>
<Citation>Sussulini, A., Becker, J. S., Becker, J. S., Mass Spectrom. Rev. 2017, 36, 47-57.</Citation>
</Reference>
<Reference>
<Citation>Clases, D., Fingerhut, S., Jeibmann, A., Sperling, M., Doble, P., Karst, U., J. Trace Elem. Med. Biol. 2019, 51, 212-218.</Citation>
</Reference>
<Reference>
<Citation>Moreno-Gordaliza, E., Giesen, C., Lazaro, A., Esteban-Fernandez, D., Humanes, B., Canas, B., Panne, U., Tejedor, A., Jakubowski, N., Gomez-Gomez, M. M., Anal. Chem. 2011, 83, 7933-7940.</Citation>
</Reference>
<Reference>
<Citation>Sun, H., Szeto, K. Y., J. Inorg. Biochem. 2003, 94, 114-120.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Tsang, C.-N., Xu, F., Kong, P.-W., Hu, L., Wang, J., Chu, I. K., Li, H., Sun, H., Chem. Commun. 2015, 51, 16479-16482.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Hu, L., Xu, F., Quan, Q., Lai, Y.-T., Xia, W., Yang, Y., Chang, Y.-Y., Yang, X., Chai, Z., Wang, J., Chu, I. K., Li, H., Sun, H., Chem. Sci. 2017, 8, 4626-4633.</Citation>
</Reference>
<Reference>
<Citation>Wang, R., Lai, T.-P., Gao, P., Zhang, H., Ho, P.-L., Woo, P. C.-Y., Ma, G., Kao, R. Y.-T., Li, H., Sun, H., Nat. Commun. 2018, 9, 439.</Citation>
</Reference>
<Reference>
<Citation>Han, B., Zhang, Z., Xie, Y., Hu, X., Wang, H., Xia, W., Wang, Y., Li, H., Wang, Y., Sun, H., Chem. Sci. 2018, 9, 7488-7497.</Citation>
</Reference>
<Reference>
<Citation>Groessl, M., Hartinger, C. G., Anal. Bioanal. Chem. 2013, 405, 1791-1808.</Citation>
</Reference>
<Reference>
<Citation>Becker, J. S., Mounicou, S., Zoriy, M. V., Becker, J. S., Lobinski, R., Talanta 2008, 76, 1183-1188.</Citation>
</Reference>
<Reference>
<Citation>Becker, J. S., Lobinski, R., Becker, J. S., Metallomics 2009, 1, 312-316.</Citation>
</Reference>
<Reference>
<Citation>Fuertes, M. A., Castilla, J., Alonso, C., Pérez, J. M., Curr. Med. Chem. 2003, 10, 257-266.</Citation>
</Reference>
<Reference>
<Citation>Hu, W., Luo, Q., Wu, K., Li, X., Wang, F., Chen, Y., Ma, X., Wang, J., Liu, J., Xiong, S., Sadler, P. J., Chem. Commun. 2011, 47, 6006-6008.</Citation>
</Reference>
<Reference>
<Citation>Sooriyaarachchi, M., Narendran, A., Gailer, J., Metallomics 2011, 3, 49-55.</Citation>
</Reference>
<Reference>
<Citation>Yotsuyanagi, T., Ohta, N., Futo, T., Ito, S., Chen, D., Ikeda, K., Chem. Pharm. Bull. 1991, 39, 3003-3006.</Citation>
</Reference>
<Reference>
<Citation>Will, J., Wolters, D. A., Sheldrick, W. S., Chem. Med. Chem. 2008, 3, 1696-1707.</Citation>
</Reference>
<Reference>
<Citation>Timerbaev, A. R., Aleksenko, S. S., Polec-Pawlak, K., Ruzik, R., Semenova, O., Hartinger, C. G., Oszwaldowski, S., Galanski, M., Jarosz, M., Keppler, B. K., Electrophoresis 2004, 25, 1988-1995.</Citation>
</Reference>
<Reference>
<Citation>Ferraro, G., Massai, L., Messori, L., Merlino, A., Chem. Commun. 2015, 51, 9436-9439.</Citation>
</Reference>
<Reference>
<Citation>Borisov, O. V., Mao, X., Russo, R. E., Spectrochim. Acta Part B 2000, 55, 1693-1704.</Citation>
</Reference>
<Reference>
<Citation>Stamova, S., Michalk, I., Bartsch, H., Bachmann, M., in: Kurien, B. T., Scofield, R. H. (Eds.), Methods in Molecular Biology, Humana Press, New York 2012, pp. 433-436.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000540 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000540 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31087392
   |texte=   Gel electrophoresis in combination with laser ablation-inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31087392" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021