Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.

Identifieur interne : 000521 ( PubMed/Corpus ); précédent : 000520; suivant : 000522

Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.

Auteurs : Robert N. Kirchdoerfer ; Andrew B. Ward

Source :

RBID : pubmed:31138817

English descriptors

Abstract

Recent history is punctuated by the emergence of highly pathogenic coronaviruses such as SARS- and MERS-CoV into human circulation. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Here, we present the 3.1 Å resolution structure of the SARS-CoV nsp12 polymerase bound to its essential co-factors, nsp7 and nsp8, using single particle cryo-electron microscopy. nsp12 possesses an architecture common to all viral polymerases as well as a large N-terminal extension containing a kinase-like fold and is bound by two nsp8 co-factors. This structure illuminates the assembly of the coronavirus core RNA-synthesis machinery, provides key insights into nsp12 polymerase catalysis and fidelity and acts as a template for the design of novel antiviral therapeutics.

DOI: 10.1038/s41467-019-10280-3
PubMed: 31138817

Links to Exploration step

pubmed:31138817

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.</title>
<author>
<name sortKey="Kirchdoerfer, Robert N" sort="Kirchdoerfer, Robert N" uniqKey="Kirchdoerfer R" first="Robert N" last="Kirchdoerfer">Robert N. Kirchdoerfer</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA, 92037, USA. rkirchdo@scripps.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ward, Andrew B" sort="Ward, Andrew B" uniqKey="Ward A" first="Andrew B" last="Ward">Andrew B. Ward</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31138817</idno>
<idno type="pmid">31138817</idno>
<idno type="doi">10.1038/s41467-019-10280-3</idno>
<idno type="wicri:Area/PubMed/Corpus">000521</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000521</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.</title>
<author>
<name sortKey="Kirchdoerfer, Robert N" sort="Kirchdoerfer, Robert N" uniqKey="Kirchdoerfer R" first="Robert N" last="Kirchdoerfer">Robert N. Kirchdoerfer</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA, 92037, USA. rkirchdo@scripps.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ward, Andrew B" sort="Ward, Andrew B" uniqKey="Ward A" first="Andrew B" last="Ward">Andrew B. Ward</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA, 92037, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coenzymes (ultrastructure)</term>
<term>Cryoelectron Microscopy</term>
<term>DNA-Directed RNA Polymerases (ultrastructure)</term>
<term>Genome, Viral</term>
<term>SARS Virus (metabolism)</term>
<term>SARS Virus (ultrastructure)</term>
<term>Viral Nonstructural Proteins (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Coenzymes</term>
<term>DNA-Directed RNA Polymerases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cryoelectron Microscopy</term>
<term>Genome, Viral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent history is punctuated by the emergence of highly pathogenic coronaviruses such as SARS- and MERS-CoV into human circulation. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Here, we present the 3.1 Å resolution structure of the SARS-CoV nsp12 polymerase bound to its essential co-factors, nsp7 and nsp8, using single particle cryo-electron microscopy. nsp12 possesses an architecture common to all viral polymerases as well as a large N-terminal extension containing a kinase-like fold and is bound by two nsp8 co-factors. This structure illuminates the assembly of the coronavirus core RNA-synthesis machinery, provides key insights into nsp12 polymerase catalysis and fidelity and acts as a template for the design of novel antiviral therapeutics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31138817</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.</ArticleTitle>
<Pagination>
<MedlinePgn>2342</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-019-10280-3</ELocationID>
<Abstract>
<AbstractText>Recent history is punctuated by the emergence of highly pathogenic coronaviruses such as SARS- and MERS-CoV into human circulation. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Here, we present the 3.1 Å resolution structure of the SARS-CoV nsp12 polymerase bound to its essential co-factors, nsp7 and nsp8, using single particle cryo-electron microscopy. nsp12 possesses an architecture common to all viral polymerases as well as a large N-terminal extension containing a kinase-like fold and is bound by two nsp8 co-factors. This structure illuminates the assembly of the coronavirus core RNA-synthesis machinery, provides key insights into nsp12 polymerase catalysis and fidelity and acts as a template for the design of novel antiviral therapeutics.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kirchdoerfer</LastName>
<ForeName>Robert N</ForeName>
<Initials>RN</Initials>
<Identifier Source="ORCID">0000-0002-5974-2709</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA, 92037, USA. rkirchdo@scripps.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ward</LastName>
<ForeName>Andrew B</ForeName>
<Initials>AB</Initials>
<Identifier Source="ORCID">0000-0001-7153-3769</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA, 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI123498</GrantID>
<Agency>U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>AI127521</GrantID>
<Agency>U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>K99 AI123498</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 AI123498</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI127521</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003067">Coenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012321">DNA-Directed RNA Polymerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003067" MajorTopicYN="N">Coenzymes</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012321" MajorTopicYN="N">DNA-Directed RNA Polymerases</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31138817</ArticleId>
<ArticleId IdType="doi">10.1038/s41467-019-10280-3</ArticleId>
<ArticleId IdType="pii">10.1038/s41467-019-10280-3</ArticleId>
<ArticleId IdType="pmc">PMC6538669</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):293-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29067766</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2003 Jun 13;52(23):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12803196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antivir Ther. 2007;12(4 Pt B):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944272</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25197083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Apr 1;31(7):1821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654997</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W344-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27166375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Apr;86(8):4444-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22318142</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2012 Feb;40(4):1737-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Oct;77(19):10515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27131377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2017 Jun 26;13(6):e1006474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28651017</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2018 Jan 1;513:75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29035788</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2016 Jan;193(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Mar;14(3):290-296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28165473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Apr;76(7):3482-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884572</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2009 May;166(2):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374019</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2012 Nov;157(11):2095-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22791111</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Nov;12(11):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2009 Jul 3;390(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426741</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Oct;12(10):943-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26280328</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2002 Nov 15;324(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421558</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):361-365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25707030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:57-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609509</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Jul 27;90(16):7415-7428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27279608</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2015 Sep 30;43(17):8416-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26304538</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2017 Dec 1;33(23):3824-3826</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28961740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2017 Apr 15;234:4-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28163093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2004 Feb;12(2):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2018 Oct 18;175(3):809-821.e19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30270044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2018 Mar 6;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29511076</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148772</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:49-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355834</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873246</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):135-145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28884485</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):10-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol Sin. 2016 Feb;31(1):3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26847650</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2011 May;7(5):e1002059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637813</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2018 Nov 09;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30412051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2009 Dec;19(6):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914821</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2004 Aug;12(8):1533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15296746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Nov;14(11):1075-1078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28991891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1989 Dec 1;8(12):3867-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2555175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2013 Jul-Aug;4(4):351-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23606593</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2005 Jul;151(1):41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMJ. 2004 May 22;328(7450):1222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Apr;14(4):331-332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28250466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2007 May 23;2(5):e459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17520018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2015 Mar 16;11(3):e1004682</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2014 Dec 19;194:90-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451065</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31138817
   |texte=   Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31138817" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021