Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage.

Identifieur interne : 000509 ( PubMed/Corpus ); précédent : 000508; suivant : 000510

BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage.

Auteurs : Lee E. Korshoj ; Prashant Nagpal

Source :

RBID : pubmed:31173943

Abstract

A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.

DOI: 10.1016/j.compbiomed.2019.05.022
PubMed: 31173943

Links to Exploration step

pubmed:31173943

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage.</title>
<author>
<name sortKey="Korshoj, Lee E" sort="Korshoj, Lee E" uniqKey="Korshoj L" first="Lee E" last="Korshoj">Lee E. Korshoj</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80303, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nagpal, Prashant" sort="Nagpal, Prashant" uniqKey="Nagpal P" first="Prashant" last="Nagpal">Prashant Nagpal</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80303, USA; Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA. Electronic address: pnagpal@colorado.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31173943</idno>
<idno type="pmid">31173943</idno>
<idno type="doi">10.1016/j.compbiomed.2019.05.022</idno>
<idno type="wicri:Area/PubMed/Corpus">000509</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage.</title>
<author>
<name sortKey="Korshoj, Lee E" sort="Korshoj, Lee E" uniqKey="Korshoj L" first="Lee E" last="Korshoj">Lee E. Korshoj</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80303, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nagpal, Prashant" sort="Nagpal, Prashant" uniqKey="Nagpal P" first="Prashant" last="Nagpal">Prashant Nagpal</name>
<affiliation>
<nlm:affiliation>Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80303, USA; Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA. Electronic address: pnagpal@colorado.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computers in biology and medicine</title>
<idno type="eISSN">1879-0534</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31173943</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0534</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Computers in biology and medicine</Title>
<ISOAbbreviation>Comput. Biol. Med.</ISOAbbreviation>
</Journal>
<ArticleTitle>BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage.</ArticleTitle>
<Pagination>
<MedlinePgn>196-206</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0010-4825(19)30190-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.compbiomed.2019.05.022</ELocationID>
<Abstract>
<AbstractText>A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Korshoj</LastName>
<ForeName>Lee E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80303, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagpal</LastName>
<ForeName>Prashant</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80303, USA; Materials Science and Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA. Electronic address: pnagpal@colorado.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Comput Biol Med</MedlineTA>
<NlmUniqueID>1250250</NlmUniqueID>
<ISSNLinking>0010-4825</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Biomarker detection</Keyword>
<Keyword MajorTopicYN="Y">DNA sequencing</Keyword>
<Keyword MajorTopicYN="Y">High-throughput diagnostics</Keyword>
<Keyword MajorTopicYN="Y">Multidrug-resistant bacteria</Keyword>
<Keyword MajorTopicYN="Y">Optical sequencing</Keyword>
<Keyword MajorTopicYN="Y">Raman spectroscopy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31173943</ArticleId>
<ArticleId IdType="pii">S0010-4825(19)30190-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.compbiomed.2019.05.022</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31173943
   |texte=   BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31173943" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021