Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is Antigenically Different From the Middle East Isolate EMC.

Identifieur interne : 000488 ( PubMed/Corpus ); précédent : 000487; suivant : 000489

Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is Antigenically Different From the Middle East Isolate EMC.

Auteurs : Kazuya Shirato ; Simenew Keskes Melaku ; Kengo Kawachi ; Naganori Nao ; Naoko Iwata-Yoshikawa ; Miyuki Kawase ; Wataru Kamitani ; Shutoku Matsuyama ; Tesfaye Sisay Tessema ; Hiroshi Sentsui

Source :

RBID : pubmed:31275264

Abstract

Middle East respiratory syndrome (MERS) is an emerging respiratory disease caused by the MERS coronavirus (MERS-CoV). MERS has been endemic to Saudi Arabia since 2012. The reservoir of MERS-CoV is the dromedary camel, suggesting that MERS is primarily a zoonotic disease. MERS-CoV is common in dromedaries throughout the Middle East, North Africa, and East Africa as evidenced by neutralizing antibodies against MERS-CoV; however, human cases have remained limited to the Middle East. To better understand the cause of this difference, the virological properties of African camel MERS-CoV were analyzed based on the spike (S) protein in Ethiopia. Nasal swabs were collected from 258 young dromedaries (≤ 2 years old) in the Afar region of Ethiopia, of which 39 were positive for MERS-CoV, as confirmed by genetic tests. All positive tests were exclusive to the Amibara woreda region. Using next-generation sequencing, two full-length genomes of Amibara isolates were successfully decoded; both isolates belonged to the C2 clade based on phylogenetic analysis of full-length and S protein sequences. Recombinant EMC isolates of MERS-CoV, in which the S protein is replaced with those of Amibara isolates, were then generated to test the roles of these proteins in viral properties. Amibara S recombinants replicated more slowly in cultured cells than in EMC S recombinants. In neutralizing assays, Amibara S recombinants were neutralized by lower concentrations of sera from both Ethiopian dromedaries and EMC isolate (wild-type)-immunized mouse sera, relative to the EMC S recombinants, indicating that viruses coated in the Amibara S protein were easier to neutralize than the EMC S protein. Neutralization experiments performed using S1/S2 chimeric recombinants of the EMC and Amibara S proteins showed that the neutralization profile was dependent on the S1 region of the S protein. These results suggest that the slower viral replication and the ease of neutralization seen in the Ethiopian MERS-CoV are due to strain-specific differences in the S protein and may account for the absence of human MERS-CoV cases in Ethiopia.

DOI: 10.3389/fmicb.2019.01326
PubMed: 31275264

Links to Exploration step

pubmed:31275264

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is Antigenically Different From the Middle East Isolate EMC.</title>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Melaku, Simenew Keskes" sort="Melaku, Simenew Keskes" uniqKey="Melaku S" first="Simenew Keskes" last="Melaku">Simenew Keskes Melaku</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawachi, Kengo" sort="Kawachi, Kengo" uniqKey="Kawachi K" first="Kengo" last="Kawachi">Kengo Kawachi</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nao, Naganori" sort="Nao, Naganori" uniqKey="Nao N" first="Naganori" last="Nao">Naganori Nao</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iwata Yoshikawa, Naoko" sort="Iwata Yoshikawa, Naoko" uniqKey="Iwata Yoshikawa N" first="Naoko" last="Iwata-Yoshikawa">Naoko Iwata-Yoshikawa</name>
<affiliation>
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawase, Miyuki" sort="Kawase, Miyuki" uniqKey="Kawase M" first="Miyuki" last="Kawase">Miyuki Kawase</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kamitani, Wataru" sort="Kamitani, Wataru" uniqKey="Kamitani W" first="Wataru" last="Kamitani">Wataru Kamitani</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tessema, Tesfaye Sisay" sort="Tessema, Tesfaye Sisay" uniqKey="Tessema T" first="Tesfaye Sisay" last="Tessema">Tesfaye Sisay Tessema</name>
<affiliation>
<nlm:affiliation>Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sentsui, Hiroshi" sort="Sentsui, Hiroshi" uniqKey="Sentsui H" first="Hiroshi" last="Sentsui">Hiroshi Sentsui</name>
<affiliation>
<nlm:affiliation>Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31275264</idno>
<idno type="pmid">31275264</idno>
<idno type="doi">10.3389/fmicb.2019.01326</idno>
<idno type="wicri:Area/PubMed/Corpus">000488</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000488</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is Antigenically Different From the Middle East Isolate EMC.</title>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Melaku, Simenew Keskes" sort="Melaku, Simenew Keskes" uniqKey="Melaku S" first="Simenew Keskes" last="Melaku">Simenew Keskes Melaku</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawachi, Kengo" sort="Kawachi, Kengo" uniqKey="Kawachi K" first="Kengo" last="Kawachi">Kengo Kawachi</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nao, Naganori" sort="Nao, Naganori" uniqKey="Nao N" first="Naganori" last="Nao">Naganori Nao</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Iwata Yoshikawa, Naoko" sort="Iwata Yoshikawa, Naoko" uniqKey="Iwata Yoshikawa N" first="Naoko" last="Iwata-Yoshikawa">Naoko Iwata-Yoshikawa</name>
<affiliation>
<nlm:affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kawase, Miyuki" sort="Kawase, Miyuki" uniqKey="Kawase M" first="Miyuki" last="Kawase">Miyuki Kawase</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kamitani, Wataru" sort="Kamitani, Wataru" uniqKey="Kamitani W" first="Wataru" last="Kamitani">Wataru Kamitani</name>
<affiliation>
<nlm:affiliation>Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<nlm:affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tessema, Tesfaye Sisay" sort="Tessema, Tesfaye Sisay" uniqKey="Tessema T" first="Tesfaye Sisay" last="Tessema">Tesfaye Sisay Tessema</name>
<affiliation>
<nlm:affiliation>Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sentsui, Hiroshi" sort="Sentsui, Hiroshi" uniqKey="Sentsui H" first="Hiroshi" last="Sentsui">Hiroshi Sentsui</name>
<affiliation>
<nlm:affiliation>Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome (MERS) is an emerging respiratory disease caused by the MERS coronavirus (MERS-CoV). MERS has been endemic to Saudi Arabia since 2012. The reservoir of MERS-CoV is the dromedary camel, suggesting that MERS is primarily a zoonotic disease. MERS-CoV is common in dromedaries throughout the Middle East, North Africa, and East Africa as evidenced by neutralizing antibodies against MERS-CoV; however, human cases have remained limited to the Middle East. To better understand the cause of this difference, the virological properties of African camel MERS-CoV were analyzed based on the spike (S) protein in Ethiopia. Nasal swabs were collected from 258 young dromedaries (≤ 2 years old) in the Afar region of Ethiopia, of which 39 were positive for MERS-CoV, as confirmed by genetic tests. All positive tests were exclusive to the Amibara woreda region. Using next-generation sequencing, two full-length genomes of Amibara isolates were successfully decoded; both isolates belonged to the C2 clade based on phylogenetic analysis of full-length and S protein sequences. Recombinant EMC isolates of MERS-CoV, in which the S protein is replaced with those of Amibara isolates, were then generated to test the roles of these proteins in viral properties. Amibara S recombinants replicated more slowly in cultured cells than in EMC S recombinants. In neutralizing assays, Amibara S recombinants were neutralized by lower concentrations of sera from both Ethiopian dromedaries and EMC isolate (wild-type)-immunized mouse sera, relative to the EMC S recombinants, indicating that viruses coated in the Amibara S protein were easier to neutralize than the EMC S protein. Neutralization experiments performed using S1/S2 chimeric recombinants of the EMC and Amibara S proteins showed that the neutralization profile was dependent on the S1 region of the S protein. These results suggest that the slower viral replication and the ease of neutralization seen in the Ethiopian MERS-CoV are due to strain-specific differences in the S protein and may account for the absence of human MERS-CoV cases in Ethiopia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31275264</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is Antigenically Different From the Middle East Isolate EMC.</ArticleTitle>
<Pagination>
<MedlinePgn>1326</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2019.01326</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome (MERS) is an emerging respiratory disease caused by the MERS coronavirus (MERS-CoV). MERS has been endemic to Saudi Arabia since 2012. The reservoir of MERS-CoV is the dromedary camel, suggesting that MERS is primarily a zoonotic disease. MERS-CoV is common in dromedaries throughout the Middle East, North Africa, and East Africa as evidenced by neutralizing antibodies against MERS-CoV; however, human cases have remained limited to the Middle East. To better understand the cause of this difference, the virological properties of African camel MERS-CoV were analyzed based on the spike (S) protein in Ethiopia. Nasal swabs were collected from 258 young dromedaries (≤ 2 years old) in the Afar region of Ethiopia, of which 39 were positive for MERS-CoV, as confirmed by genetic tests. All positive tests were exclusive to the Amibara woreda region. Using next-generation sequencing, two full-length genomes of Amibara isolates were successfully decoded; both isolates belonged to the C2 clade based on phylogenetic analysis of full-length and S protein sequences. Recombinant EMC isolates of MERS-CoV, in which the S protein is replaced with those of Amibara isolates, were then generated to test the roles of these proteins in viral properties. Amibara S recombinants replicated more slowly in cultured cells than in EMC S recombinants. In neutralizing assays, Amibara S recombinants were neutralized by lower concentrations of sera from both Ethiopian dromedaries and EMC isolate (wild-type)-immunized mouse sera, relative to the EMC S recombinants, indicating that viruses coated in the Amibara S protein were easier to neutralize than the EMC S protein. Neutralization experiments performed using S1/S2 chimeric recombinants of the EMC and Amibara S proteins showed that the neutralization profile was dependent on the S1 region of the S protein. These results suggest that the slower viral replication and the ease of neutralization seen in the Ethiopian MERS-CoV are due to strain-specific differences in the S protein and may account for the absence of human MERS-CoV cases in Ethiopia.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shirato</LastName>
<ForeName>Kazuya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Melaku</LastName>
<ForeName>Simenew Keskes</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kawachi</LastName>
<ForeName>Kengo</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nao</LastName>
<ForeName>Naganori</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iwata-Yoshikawa</LastName>
<ForeName>Naoko</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kawase</LastName>
<ForeName>Miyuki</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kamitani</LastName>
<ForeName>Wataru</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsuyama</LastName>
<ForeName>Shutoku</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tessema</LastName>
<ForeName>Tesfaye Sisay</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sentsui</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ethiopia</Keyword>
<Keyword MajorTopicYN="N">Middle East respiratory syndrome</Keyword>
<Keyword MajorTopicYN="N">Middle East respiratory syndrome coronavirus</Keyword>
<Keyword MajorTopicYN="N">antigenicity</Keyword>
<Keyword MajorTopicYN="N">dromedary</Keyword>
<Keyword MajorTopicYN="N">neutralization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31275264</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2019.01326</ArticleId>
<ArticleId IdType="pmc">PMC6593072</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2002 Feb;40(2):372-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11825944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1991 Mar;18(2-3):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1645909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 2008 Feb;52(2):118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18380809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):712-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrika. 1947;34(1-2):28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20287819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jun;86(12):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Sep 27;17(39):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Sep 27;17(39):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Dec 06;17(49):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 May;19(5):736-42B</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23693015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(16):9379-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Aug 8;500(7461):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23835475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Oct;87(19):10777-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2013 Dec 12;18(50):20659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24342517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Feb 18;5(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 Feb 25;5(2):e00884-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24570370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Jun 26;370(26):2499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24896817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2014 Jun 12;19(23):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24957744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Aug;20(8):1370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25062254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12):2093-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2015 May;15(5):559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25863564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2015 Jun;21(6):1019-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25989145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Infect Dis. 2015;68(3):256-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25993975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Aug 18;5:13133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26281793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Nov;25(11):1237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2015;20(37):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26536463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2016 Jun;22(6):1086-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27071076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Dec 16;91(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2017 Mar 30;22(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28382915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2017 May 24;6(5):e37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28536429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2017 Nov;511:95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28843094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2018 Jan;251:22-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3144-3149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29507189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Apr 27;92(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29514901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2018 Aug;258:41-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29763640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoonoses Public Health. 2018 May 31;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29855166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2018 Aug 15;255:14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29936068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Jul 10;24(2):441-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29996104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Sep 12;92(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30021905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2018 Nov 28;7(1):195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30482895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1988 Dec;69 ( Pt 12):2939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3058868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2019 Mar 5;93(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30626685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1993 Jul;74 ( Pt 7):1421-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687650</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000488 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000488 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31275264
   |texte=   Middle East Respiratory Syndrome Coronavirus in Dromedaries in Ethiopia Is Antigenically Different From the Middle East Isolate EMC.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31275264" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021