Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapid identification of human-infecting viruses.

Identifieur interne : 000464 ( PubMed/Corpus ); précédent : 000463; suivant : 000465

Rapid identification of human-infecting viruses.

Auteurs : Zheng Zhang ; Zena Cai ; Zhiying Tan ; Congyu Lu ; Taijiao Jiang ; Gaihua Zhang ; Yousong Peng

Source :

RBID : pubmed:31373773

English descriptors

Abstract

Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate human-infecting viruses from other viruses based on the frequency of k-mers in the viral genomic sequences. The k-nearest neighbor (KNN) model can predict the human-infecting viruses with an accuracy of over 90%. The performance of this KNN model built on the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used a reported human blood virome to further validate this KNN model with an accuracy of over 80% based on very short raw reads (150 bp). Our work demonstrates a conceptual and generic protocol for the discovery of novel human-infecting viruses in viral metagenomics studies.

DOI: 10.1111/tbed.13314
PubMed: 31373773

Links to Exploration step

pubmed:31373773

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid identification of human-infecting viruses.</title>
<author>
<name sortKey="Zhang, Zheng" sort="Zhang, Zheng" uniqKey="Zhang Z" first="Zheng" last="Zhang">Zheng Zhang</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cai, Zena" sort="Cai, Zena" uniqKey="Cai Z" first="Zena" last="Cai">Zena Cai</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tan, Zhiying" sort="Tan, Zhiying" uniqKey="Tan Z" first="Zhiying" last="Tan">Zhiying Tan</name>
<affiliation>
<nlm:affiliation>College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Congyu" sort="Lu, Congyu" uniqKey="Lu C" first="Congyu" last="Lu">Congyu Lu</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Taijiao" sort="Jiang, Taijiao" uniqKey="Jiang T" first="Taijiao" last="Jiang">Taijiao Jiang</name>
<affiliation>
<nlm:affiliation>Suzhou Institute of Systems Medicine, Suzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Gaihua" sort="Zhang, Gaihua" uniqKey="Zhang G" first="Gaihua" last="Zhang">Gaihua Zhang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Hunan Normal University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peng, Yousong" sort="Peng, Yousong" uniqKey="Peng Y" first="Yousong" last="Peng">Yousong Peng</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31373773</idno>
<idno type="pmid">31373773</idno>
<idno type="doi">10.1111/tbed.13314</idno>
<idno type="wicri:Area/PubMed/Corpus">000464</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000464</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapid identification of human-infecting viruses.</title>
<author>
<name sortKey="Zhang, Zheng" sort="Zhang, Zheng" uniqKey="Zhang Z" first="Zheng" last="Zhang">Zheng Zhang</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cai, Zena" sort="Cai, Zena" uniqKey="Cai Z" first="Zena" last="Cai">Zena Cai</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tan, Zhiying" sort="Tan, Zhiying" uniqKey="Tan Z" first="Zhiying" last="Tan">Zhiying Tan</name>
<affiliation>
<nlm:affiliation>College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lu, Congyu" sort="Lu, Congyu" uniqKey="Lu C" first="Congyu" last="Lu">Congyu Lu</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Taijiao" sort="Jiang, Taijiao" uniqKey="Jiang T" first="Taijiao" last="Jiang">Taijiao Jiang</name>
<affiliation>
<nlm:affiliation>Suzhou Institute of Systems Medicine, Suzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Gaihua" sort="Zhang, Gaihua" uniqKey="Zhang G" first="Gaihua" last="Zhang">Gaihua Zhang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Hunan Normal University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peng, Yousong" sort="Peng, Yousong" uniqKey="Peng Y" first="Yousong" last="Peng">Yousong Peng</name>
<affiliation>
<nlm:affiliation>College of Biology, Hunan University, Changsha, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Transboundary and emerging diseases</title>
<idno type="eISSN">1865-1682</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Blood (virology)</term>
<term>Cluster Analysis</term>
<term>DNA, Viral (blood)</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Machine Learning</term>
<term>Metagenomics</term>
<term>Viruses (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>DNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Blood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cluster Analysis</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Machine Learning</term>
<term>Metagenomics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate human-infecting viruses from other viruses based on the frequency of k-mers in the viral genomic sequences. The k-nearest neighbor (KNN) model can predict the human-infecting viruses with an accuracy of over 90%. The performance of this KNN model built on the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used a reported human blood virome to further validate this KNN model with an accuracy of over 80% based on very short raw reads (150 bp). Our work demonstrates a conceptual and generic protocol for the discovery of novel human-infecting viruses in viral metagenomics studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31373773</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1865-1682</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Transboundary and emerging diseases</Title>
<ISOAbbreviation>Transbound Emerg Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapid identification of human-infecting viruses.</ArticleTitle>
<Pagination>
<MedlinePgn>2517-2522</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tbed.13314</ELocationID>
<Abstract>
<AbstractText>Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate human-infecting viruses from other viruses based on the frequency of k-mers in the viral genomic sequences. The k-nearest neighbor (KNN) model can predict the human-infecting viruses with an accuracy of over 90%. The performance of this KNN model built on the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used a reported human blood virome to further validate this KNN model with an accuracy of over 80% based on very short raw reads (150 bp). Our work demonstrates a conceptual and generic protocol for the discovery of novel human-infecting viruses in viral metagenomics studies.</AbstractText>
<CopyrightInformation>© 2019 Blackwell Verlag GmbH.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zheng</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Biology, Hunan University, Changsha, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cai</LastName>
<ForeName>Zena</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Biology, Hunan University, Changsha, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Zhiying</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Congyu</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Biology, Hunan University, Changsha, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Taijiao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Suzhou Institute of Systems Medicine, Suzhou, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Gaihua</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Hunan Normal University, Changsha, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Yousong</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5482-9506</Identifier>
<AffiliationInfo>
<Affiliation>College of Biology, Hunan University, Changsha, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2016YFD0500300</GrantID>
<Agency>National Key Plan for Scientific Research and Development of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018JJ3039</GrantID>
<Agency>Hunan Provincial Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>kq1801040</GrantID>
<Agency>Changsha Science and Technology Bureau</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31500126</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31671371</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2016-I2M-1-005</GrantID>
<Agency>Chinese Academy of Medical Sciences</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Transbound Emerg Dis</MedlineTA>
<NlmUniqueID>101319538</NlmUniqueID>
<ISSNLinking>1865-1674</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001769" MajorTopicYN="N">Blood</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069550" MajorTopicYN="N">Machine Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056186" MajorTopicYN="N">Metagenomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014780" MajorTopicYN="N">Viruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">human-infecting virus</Keyword>
<Keyword MajorTopicYN="N">machine learning</Keyword>
<Keyword MajorTopicYN="N">viral metagenomics</Keyword>
<Keyword MajorTopicYN="N">virome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31373773</ArticleId>
<ArticleId IdType="doi">10.1111/tbed.13314</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2016). Alignment-free oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Research, 45, 39-53.</Citation>
</Reference>
<Reference>
<Citation>Akondy, R. S., Monson, N. D., Miller, J. D., Edupuganti, S., Teuwen, D., Wu, H., … Del Rio, C. (2009). The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. The Journal of Immunology, 183, 7919-7930.</Citation>
</Reference>
<Reference>
<Citation>Alavandi, S., & Poornima, M. (2012). Viral metagenomics: A tool for virus discovery and diversity in aquaculture. Indian Journal of Virology, 23, 88-98. https://doi.org/10.1007/s13337-012-0075-2</Citation>
</Reference>
<Reference>
<Citation>Barandiaran, I. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844.</Citation>
</Reference>
<Reference>
<Citation>Baseman, J. G., & Koutsky, L. A. (2005). The epidemiology of human papillomavirus infections. Journal of Clinical Virology, 32, 16-24. https://doi.org/10.1016/j.jcv.2004.12.008</Citation>
</Reference>
<Reference>
<Citation>Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561.</Citation>
</Reference>
<Reference>
<Citation>Breban, R., Riou, J., & Fontanet, A. (2013). Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk. The Lancet, 382, 694-699. https://doi.org/10.1016/S0140-6736(13)61492-0</Citation>
</Reference>
<Reference>
<Citation>Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. https://doi.org/10.1007/BF00058655</Citation>
</Reference>
<Reference>
<Citation>Campos, G. S., Bandeira, A. C., & Sardi, S. I. (2015). Zika virus outbreak, Bahia, Brazil. Emerging Infectious Diseases, 21, 1885. https://doi.org/10.3201/eid2110.150847</Citation>
</Reference>
<Reference>
<Citation>Carroll, D., Daszak, P., Wolfe, N. D., Gao, G. F., Morel, C. M., Morzaria, S., … Mazet, J. A. (2018). The global virome project. Science, 359, 872-874. https://doi.org/10.1126/science.aap7463</Citation>
</Reference>
<Reference>
<Citation>Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data (Vol. 110, pp. 1-12). Berkeley, CA: University of California.</Citation>
</Reference>
<Reference>
<Citation>Corman, V. V., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M. M., … Bestebroer, T. (2012). Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance, 17(39), 20285. https://doi.org/10.2807/ese.17.39.20285-en</Citation>
</Reference>
<Reference>
<Citation>de Oliveira Garcia, M. H. (2019). Zika: The continuing threat. Bulletin of the World Health Organization, 97, 6-7.</Citation>
</Reference>
<Reference>
<Citation>Duffy, M. R., Chen, T.-H., Hancock, W. T., Powers, A. M., Kool, J. L., Lanciotti, R. S., … Hayes, E. B. (2009). Zika virus outbreak on Yap Island, federated states of Micronesia. New England Journal of Medicine, 360, 2536-2543. https://doi.org/10.1056/NEJMoa0805715</Citation>
</Reference>
<Reference>
<Citation>Edwards, R. A., McNair, K., Faust, K., Raes, J., & Dutilh, B. E. (2015). Computational approaches to predict bacteriophage-host relationships. FEMS Microbiology Reviews, 40, 258-272. https://doi.org/10.1093/femsre/fuv048</Citation>
</Reference>
<Reference>
<Citation>European CDC (2016). Zika virus epidemic in the Americas: Potential association with microcephaly and Guillain-Barré syndrome (first update). Stockholm, Sweden: ECDC.</Citation>
</Reference>
<Reference>
<Citation>Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., … Shu, Y. (2013). Human infection with a novel avian-origin influenza A (H7N9) virus. New England Journal of Medicine, 368, 1888-1897. https://doi.org/10.1056/NEJMoa1304459</Citation>
</Reference>
<Reference>
<Citation>García-Sastre, A., & Schmolke, M. (2014). Avian influenza A H10N8-A virus on the verge? The Lancet, 383, 676-677. https://doi.org/10.1016/S0140-6736(14)60163-X</Citation>
</Reference>
<Reference>
<Citation>Johnson, N. P., & Mueller, J. (2002). Updating the accounts: Global mortality of the 1918-1920 “Spanish” influenza pandemic. Bulletin of the History of Medicine, 76, 105-115.</Citation>
</Reference>
<Reference>
<Citation>Li, H., & Sun, F. (2018). Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences. Scientific Reports, 8, 10032. https://doi.org/10.1038/s41598-018-28308-x</Citation>
</Reference>
<Reference>
<Citation>Liu, Y., Liu, J., Du, S., Shan, C., Nie, K., Zhang, R., … Cheng, G. (2017). Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature, 545, 482. https://doi.org/10.1038/nature22365</Citation>
</Reference>
<Reference>
<Citation>Maganga, G. D., Kapetshi, J., Berthet, N., Kebela Ilunga, B., Kabange, F., Mbala Kingebeni, P., … Leroy, E. M. (2014). Ebola virus disease in the Democratic Republic of Congo. New England Journal of Medicine, 371, 2083-2091. https://doi.org/10.1056/NEJMoa1411099</Citation>
</Reference>
<Reference>
<Citation>Mihara, T., Nishimura, Y., Shimizu, Y., Nishiyama, H., Yoshikawa, G., Uehara, H., … Ogata, H. (2016). Linking virus genomes with host taxonomy. Viruses, 8, 66. https://doi.org/10.3390/v8030066</Citation>
</Reference>
<Reference>
<Citation>Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., … Avšič Županc, T. (2016). Zika virus associated with microcephaly. New England Journal of Medicine, 374, 951-958. https://doi.org/10.1056/NEJMoa1600651</Citation>
</Reference>
<Reference>
<Citation>Moustafa, A., Xie, C., Kirkness, E., Biggs, W., Wong, E., Turpaz, Y., … Telenti, A. (2017). The blood DNA virome in 8,000 humans. PLoS Path, 13, e1006292. https://doi.org/10.1371/journal.ppat.1006292</Citation>
</Reference>
<Reference>
<Citation>Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., Huntemann, M., Mikhailova, N., … Kyrpides, N. C. (2016). Uncovering Earth's virome. Nature, 536, 425. https://doi.org/10.1038/nature19094</Citation>
</Reference>
<Reference>
<Citation>Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.</Citation>
</Reference>
<Reference>
<Citation>Riedel, S. (2005). Edward Jenner and the history of smallpox and vaccination. Paper presented at: Baylor University Medical Center Proceedings (Taylor & Francis).</Citation>
</Reference>
<Reference>
<Citation>Rosenberg, R. (2015). Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cellular and Molecular Life Sciences, 72, 1115-1125. https://doi.org/10.1007/s00018-014-1785-y</Citation>
</Reference>
<Reference>
<Citation>Shipley, R., Wright, E., Selden, D., Wu, G., Aegerter, J., Fooks, A. R., & Banyard, A. C. (2019). Bats and viruses: Emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Tropical Medicine and Infectious Disease, 4, 31. https://doi.org/10.3390/tropicalmed4010031</Citation>
</Reference>
<Reference>
<Citation>Weaver, S. C., Costa, F., Garcia-Blanco, M. A., Ko, A. I., Ribeiro, G. S., Saade, G., … Vasilakis, N. (2016). Zika virus: History, emergence, biology, and prospects for control. Antiviral Research, 130, 69-80. https://doi.org/10.1016/j.antiviral.2016.03.010</Citation>
</Reference>
<Reference>
<Citation>Woolhouse, M., & Gaunt, E. (2007). Ecological origins of novel human pathogens. Critical Reviews in Microbiology, 33, 231-242. https://doi.org/10.1080/10408410701647560</Citation>
</Reference>
<Reference>
<Citation>Wootton, S. C., Kim, D. S., Kondoh, Y., Chen, E., Lee, J. S., Song, J. W., … Collard, H. R. (2011). Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 183, 1698-1702. https://doi.org/10.1164/rccm.201010-1752OC</Citation>
</Reference>
<Reference>
<Citation>Xu, B., Tan, Z., Li, K., Jiang, T., & Peng, Y. (2017). Predicting the host of influenza viruses based on the word vector. PeerJ, 5, e3579. https://doi.org/10.7717/peerj.3579</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000464 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000464 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31373773
   |texte=   Rapid identification of human-infecting viruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31373773" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021