Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity.

Identifieur interne : 000440 ( PubMed/Corpus ); précédent : 000439; suivant : 000441

Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity.

Auteurs : Bryan A. Johnson ; Adam Hage ; Birte Kalveram ; Megan Mears ; Jessica A. Plante ; Sergio E. Rodriguez ; Zhixia Ding ; Xuemei Luo ; Dennis Bente ; Shelton S. Bradrick ; Alexander N. Freiberg ; Vsevolod Popov ; Ricardo Rajsbaum ; Shannan Rossi ; William K. Russell ; Vineet D. Menachery

Source :

RBID : pubmed:31462558

Abstract

Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.

DOI: 10.1128/JVI.01282-19
PubMed: 31462558

Links to Exploration step

pubmed:31462558

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity.</title>
<author>
<name sortKey="Johnson, Bryan A" sort="Johnson, Bryan A" uniqKey="Johnson B" first="Bryan A" last="Johnson">Bryan A. Johnson</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hage, Adam" sort="Hage, Adam" uniqKey="Hage A" first="Adam" last="Hage">Adam Hage</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kalveram, Birte" sort="Kalveram, Birte" uniqKey="Kalveram B" first="Birte" last="Kalveram">Birte Kalveram</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mears, Megan" sort="Mears, Megan" uniqKey="Mears M" first="Megan" last="Mears">Megan Mears</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plante, Jessica A" sort="Plante, Jessica A" uniqKey="Plante J" first="Jessica A" last="Plante">Jessica A. Plante</name>
<affiliation>
<nlm:affiliation>World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Sergio E" sort="Rodriguez, Sergio E" uniqKey="Rodriguez S" first="Sergio E" last="Rodriguez">Sergio E. Rodriguez</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ding, Zhixia" sort="Ding, Zhixia" uniqKey="Ding Z" first="Zhixia" last="Ding">Zhixia Ding</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luo, Xuemei" sort="Luo, Xuemei" uniqKey="Luo X" first="Xuemei" last="Luo">Xuemei Luo</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bente, Dennis" sort="Bente, Dennis" uniqKey="Bente D" first="Dennis" last="Bente">Dennis Bente</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bradrick, Shelton S" sort="Bradrick, Shelton S" uniqKey="Bradrick S" first="Shelton S" last="Bradrick">Shelton S. Bradrick</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Freiberg, Alexander N" sort="Freiberg, Alexander N" uniqKey="Freiberg A" first="Alexander N" last="Freiberg">Alexander N. Freiberg</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popov, Vsevolod" sort="Popov, Vsevolod" uniqKey="Popov V" first="Vsevolod" last="Popov">Vsevolod Popov</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rajsbaum, Ricardo" sort="Rajsbaum, Ricardo" uniqKey="Rajsbaum R" first="Ricardo" last="Rajsbaum">Ricardo Rajsbaum</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rossi, Shannan" sort="Rossi, Shannan" uniqKey="Rossi S" first="Shannan" last="Rossi">Shannan Rossi</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Russell, William K" sort="Russell, William K" uniqKey="Russell W" first="William K" last="Russell">William K. Russell</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA Vimenach@utmb.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31462558</idno>
<idno type="pmid">31462558</idno>
<idno type="doi">10.1128/JVI.01282-19</idno>
<idno type="wicri:Area/PubMed/Corpus">000440</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000440</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity.</title>
<author>
<name sortKey="Johnson, Bryan A" sort="Johnson, Bryan A" uniqKey="Johnson B" first="Bryan A" last="Johnson">Bryan A. Johnson</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hage, Adam" sort="Hage, Adam" uniqKey="Hage A" first="Adam" last="Hage">Adam Hage</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kalveram, Birte" sort="Kalveram, Birte" uniqKey="Kalveram B" first="Birte" last="Kalveram">Birte Kalveram</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mears, Megan" sort="Mears, Megan" uniqKey="Mears M" first="Megan" last="Mears">Megan Mears</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plante, Jessica A" sort="Plante, Jessica A" uniqKey="Plante J" first="Jessica A" last="Plante">Jessica A. Plante</name>
<affiliation>
<nlm:affiliation>World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Sergio E" sort="Rodriguez, Sergio E" uniqKey="Rodriguez S" first="Sergio E" last="Rodriguez">Sergio E. Rodriguez</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ding, Zhixia" sort="Ding, Zhixia" uniqKey="Ding Z" first="Zhixia" last="Ding">Zhixia Ding</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luo, Xuemei" sort="Luo, Xuemei" uniqKey="Luo X" first="Xuemei" last="Luo">Xuemei Luo</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bente, Dennis" sort="Bente, Dennis" uniqKey="Bente D" first="Dennis" last="Bente">Dennis Bente</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bradrick, Shelton S" sort="Bradrick, Shelton S" uniqKey="Bradrick S" first="Shelton S" last="Bradrick">Shelton S. Bradrick</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Freiberg, Alexander N" sort="Freiberg, Alexander N" uniqKey="Freiberg A" first="Alexander N" last="Freiberg">Alexander N. Freiberg</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popov, Vsevolod" sort="Popov, Vsevolod" uniqKey="Popov V" first="Vsevolod" last="Popov">Vsevolod Popov</name>
<affiliation>
<nlm:affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rajsbaum, Ricardo" sort="Rajsbaum, Ricardo" uniqKey="Rajsbaum R" first="Ricardo" last="Rajsbaum">Ricardo Rajsbaum</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rossi, Shannan" sort="Rossi, Shannan" uniqKey="Rossi S" first="Shannan" last="Rossi">Shannan Rossi</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Russell, William K" sort="Russell, William K" uniqKey="Russell W" first="William K" last="Russell">William K. Russell</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA Vimenach@utmb.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from
<i>Bacillus subtilis</i>
reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection
<i>in vivo</i>
Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.
<b>IMPORTANCE</b>
In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">31462558</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01282-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01282-19</ELocationID>
<Abstract>
<AbstractText>Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from
<i>Bacillus subtilis</i>
reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection
<i>in vivo</i>
Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.
<b>IMPORTANCE</b>
In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Bryan A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hage</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kalveram</LastName>
<ForeName>Birte</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mears</LastName>
<ForeName>Megan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plante</LastName>
<ForeName>Jessica A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Sergio E</ForeName>
<Initials>SE</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4149-7458</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Zhixia</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UTMB Electron Microscopy Laboratory, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Xuemei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UTMB Mass Spectrometry Facility, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bente</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bradrick</LastName>
<ForeName>Shelton S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Freiberg</LastName>
<ForeName>Alexander N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Popov</LastName>
<ForeName>Vsevolod</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UTMB Electron Microscopy Laboratory, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajsbaum</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rossi</LastName>
<ForeName>Shannan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Russell</LastName>
<ForeName>William K</ForeName>
<Initials>WK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>UTMB Mass Spectrometry Facility, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menachery</LastName>
<ForeName>Vineet D</ForeName>
<Initials>VD</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA Vimenach@utmb.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI132479</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI134907</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 AG049092</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI126012</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R24 AI120942</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">cyclic lipopeptide</Keyword>
<Keyword MajorTopicYN="N">microbiome</Keyword>
<Keyword MajorTopicYN="N">surfactin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31462558</ArticleId>
<ArticleId IdType="pii">JVI.01282-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01282-19</ArticleId>
<ArticleId IdType="pmc">PMC6819921</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>MBio. 2013 Feb 19;4(1):e00611-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2012 Oct 25;116(42):12735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MBio. 2017 Mar 7;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28270583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Biochem Cell Biol. 2010 Sep;42(9):1416-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398786</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(2):e31359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384012</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2002 Apr;282(4):L833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Microbiol. 2019 Aug;4(8):1328-1336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31110359</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Apr 1;1611(1-2):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12659949</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Microbiol Methods. 2002 Feb;48(2-3):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11777570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomed Res Int. 2015;2015:473050</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25632392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Drug Deliv Rev. 1998 Dec 1;34(2-3):339-350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Med Res Rev. 2016 Jan;36(1):4-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24866700</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Public Health. 2018 Jan - Feb;11(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28864360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Infect Dis. 2015 Sep 11;1(9):399-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26448476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MBio. 2015 May 26;6(3):e00638-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem. 2016 Dec 15;24(24):6253-6268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2018 Feb 22;10(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29470397</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2011 Oct 14;334(6053):249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21998395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13082-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22826229</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>G3 (Bethesda). 2017 Jun 7;7(6):1653-1663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28592648</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Bioanal Chem. 2015 Mar;407(9):2529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25662934</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2017 May;15(5):259-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28316330</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Pharmacol. 2017 Oct 26;8:761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29123482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2017 Dec 6;13(12):e1006768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29211815</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Histochem Cytochem. 1990 Feb;38(2):159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1688894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Jul 06;535(7610):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27383981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Jul;75(14):6472-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Negl Trop Dis. 2015 Sep 04;9(9):e0004007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26340754</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Biochem Biotechnol. 2008 Sep;150(3):289-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18437297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2002 Mar 4;195(5):593-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immun Inflamm Dis. 2018 Mar;6(1):117-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29105371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 Mar;32(2):149-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Aug;80(16):4898-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24907316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Jan;85(1):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Aug 24;91(18):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28679761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2018 Oct 12;92(21):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30068648</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biosci Rep. 2017 Apr 10;37(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28270576</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Apr;14(4):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26853118</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1003059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Biochim Pol. 2018 Dec 6;65(4):509-519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30521647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1993 Oct;175(20):6459-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8407822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2015 May;479-480:508-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2014 Jan;101:45-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24184128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MBio. 2013 Apr 30;4(3):e00165-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2015 Nov 1;135:425-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26280817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Antibiot (Tokyo). 2017 Jan;70(1):105-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27301660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Aug 19;370(1675):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26150660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2019 Apr 11;14(4):e0215227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30973929</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2010 Mar;91(Pt 3):765-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11089-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Mar 15;411(2):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2017 Jun 28;117(12):8094-8128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28541045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000440 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000440 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31462558
   |texte=   Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31462558" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021