Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vaccine innovations for emerging infectious diseases-a symposium report.

Identifieur interne : 000383 ( PubMed/Corpus ); précédent : 000382; suivant : 000384

Vaccine innovations for emerging infectious diseases-a symposium report.

Auteurs : Jennifer Cable ; Padmini Srikantiah ; James E. Crowe ; Bali Pulendran ; Adrian Hill ; Ann Ginsberg ; Wayne Koff ; Anuja Mathew ; Tony Ng ; Kathrin Jansen ; Gregory Glenn ; Sallie Permar ; Ian Wilson ; David B. Weiner ; Drew Weissman ; Rino Rappuoli

Source :

RBID : pubmed:31659752

Abstract

Vaccines have been incredibly successful at stemming the morbidity and mortality of infectious diseases worldwide. However, there are still no effective vaccines for many serious and potentially preventable infectious diseases. Advances in vaccine technology, including new delivery methods and adjuvants, as well as progress in systems biology and an increased understanding of the human immune system, hold the potential to address these issues. In addition, maternal immunization has opened an avenue to address infectious diseases in neonates and very young infants. This report summarizes the presentations from a 1-day symposium at the New York Academy of Sciences entitled "Innovative Vaccines against Resistant Infectious Diseases and Emerging Threats," held on May 20, 2019.

DOI: 10.1111/nyas.14235
PubMed: 31659752

Links to Exploration step

pubmed:31659752

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vaccine innovations for emerging infectious diseases-a symposium report.</title>
<author>
<name sortKey="Cable, Jennifer" sort="Cable, Jennifer" uniqKey="Cable J" first="Jennifer" last="Cable">Jennifer Cable</name>
<affiliation>
<nlm:affiliation>Science Writer, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srikantiah, Padmini" sort="Srikantiah, Padmini" uniqKey="Srikantiah P" first="Padmini" last="Srikantiah">Padmini Srikantiah</name>
<affiliation>
<nlm:affiliation>Bill & Melinda Gates Foundation, Seattle, Washington.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crowe, James E" sort="Crowe, James E" uniqKey="Crowe J" first="James E" last="Crowe">James E. Crowe</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt University, Nashville, Tennessee.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pulendran, Bali" sort="Pulendran, Bali" uniqKey="Pulendran B" first="Bali" last="Pulendran">Bali Pulendran</name>
<affiliation>
<nlm:affiliation>Institute for Immunity, Transplantation and Infection; Department of Pathology; and Department of Microbiology & Immunology, Stanford University, Stanford, California.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hill, Adrian" sort="Hill, Adrian" uniqKey="Hill A" first="Adrian" last="Hill">Adrian Hill</name>
<affiliation>
<nlm:affiliation>The Jenner Institute, University of Oxford, Oxford, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ginsberg, Ann" sort="Ginsberg, Ann" uniqKey="Ginsberg A" first="Ann" last="Ginsberg">Ann Ginsberg</name>
<affiliation>
<nlm:affiliation>International AIDS Vaccine Initiative, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koff, Wayne" sort="Koff, Wayne" uniqKey="Koff W" first="Wayne" last="Koff">Wayne Koff</name>
<affiliation>
<nlm:affiliation>The Human Vaccines Project, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mathew, Anuja" sort="Mathew, Anuja" uniqKey="Mathew A" first="Anuja" last="Mathew">Anuja Mathew</name>
<affiliation>
<nlm:affiliation>Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ng, Tony" sort="Ng, Tony" uniqKey="Ng T" first="Tony" last="Ng">Tony Ng</name>
<affiliation>
<nlm:affiliation>Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jansen, Kathrin" sort="Jansen, Kathrin" uniqKey="Jansen K" first="Kathrin" last="Jansen">Kathrin Jansen</name>
<affiliation>
<nlm:affiliation>Pfizer, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glenn, Gregory" sort="Glenn, Gregory" uniqKey="Glenn G" first="Gregory" last="Glenn">Gregory Glenn</name>
<affiliation>
<nlm:affiliation>Novavax, Rockville, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Permar, Sallie" sort="Permar, Sallie" uniqKey="Permar S" first="Sallie" last="Permar">Sallie Permar</name>
<affiliation>
<nlm:affiliation>Duke University, Durham, North Carolina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian" sort="Wilson, Ian" uniqKey="Wilson I" first="Ian" last="Wilson">Ian Wilson</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weiner, David B" sort="Weiner, David B" uniqKey="Weiner D" first="David B" last="Weiner">David B. Weiner</name>
<affiliation>
<nlm:affiliation>Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weissman, Drew" sort="Weissman, Drew" uniqKey="Weissman D" first="Drew" last="Weissman">Drew Weissman</name>
<affiliation>
<nlm:affiliation>Department of Medicine, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rappuoli, Rino" sort="Rappuoli, Rino" uniqKey="Rappuoli R" first="Rino" last="Rappuoli">Rino Rappuoli</name>
<affiliation>
<nlm:affiliation>GlaxoSmithKline, Brentford, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31659752</idno>
<idno type="pmid">31659752</idno>
<idno type="doi">10.1111/nyas.14235</idno>
<idno type="wicri:Area/PubMed/Corpus">000383</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Vaccine innovations for emerging infectious diseases-a symposium report.</title>
<author>
<name sortKey="Cable, Jennifer" sort="Cable, Jennifer" uniqKey="Cable J" first="Jennifer" last="Cable">Jennifer Cable</name>
<affiliation>
<nlm:affiliation>Science Writer, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Srikantiah, Padmini" sort="Srikantiah, Padmini" uniqKey="Srikantiah P" first="Padmini" last="Srikantiah">Padmini Srikantiah</name>
<affiliation>
<nlm:affiliation>Bill & Melinda Gates Foundation, Seattle, Washington.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crowe, James E" sort="Crowe, James E" uniqKey="Crowe J" first="James E" last="Crowe">James E. Crowe</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt University, Nashville, Tennessee.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pulendran, Bali" sort="Pulendran, Bali" uniqKey="Pulendran B" first="Bali" last="Pulendran">Bali Pulendran</name>
<affiliation>
<nlm:affiliation>Institute for Immunity, Transplantation and Infection; Department of Pathology; and Department of Microbiology & Immunology, Stanford University, Stanford, California.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hill, Adrian" sort="Hill, Adrian" uniqKey="Hill A" first="Adrian" last="Hill">Adrian Hill</name>
<affiliation>
<nlm:affiliation>The Jenner Institute, University of Oxford, Oxford, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ginsberg, Ann" sort="Ginsberg, Ann" uniqKey="Ginsberg A" first="Ann" last="Ginsberg">Ann Ginsberg</name>
<affiliation>
<nlm:affiliation>International AIDS Vaccine Initiative, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koff, Wayne" sort="Koff, Wayne" uniqKey="Koff W" first="Wayne" last="Koff">Wayne Koff</name>
<affiliation>
<nlm:affiliation>The Human Vaccines Project, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mathew, Anuja" sort="Mathew, Anuja" uniqKey="Mathew A" first="Anuja" last="Mathew">Anuja Mathew</name>
<affiliation>
<nlm:affiliation>Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ng, Tony" sort="Ng, Tony" uniqKey="Ng T" first="Tony" last="Ng">Tony Ng</name>
<affiliation>
<nlm:affiliation>Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jansen, Kathrin" sort="Jansen, Kathrin" uniqKey="Jansen K" first="Kathrin" last="Jansen">Kathrin Jansen</name>
<affiliation>
<nlm:affiliation>Pfizer, New York, New York.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glenn, Gregory" sort="Glenn, Gregory" uniqKey="Glenn G" first="Gregory" last="Glenn">Gregory Glenn</name>
<affiliation>
<nlm:affiliation>Novavax, Rockville, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Permar, Sallie" sort="Permar, Sallie" uniqKey="Permar S" first="Sallie" last="Permar">Sallie Permar</name>
<affiliation>
<nlm:affiliation>Duke University, Durham, North Carolina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Ian" sort="Wilson, Ian" uniqKey="Wilson I" first="Ian" last="Wilson">Ian Wilson</name>
<affiliation>
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weiner, David B" sort="Weiner, David B" uniqKey="Weiner D" first="David B" last="Weiner">David B. Weiner</name>
<affiliation>
<nlm:affiliation>Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weissman, Drew" sort="Weissman, Drew" uniqKey="Weissman D" first="Drew" last="Weissman">Drew Weissman</name>
<affiliation>
<nlm:affiliation>Department of Medicine, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rappuoli, Rino" sort="Rappuoli, Rino" uniqKey="Rappuoli R" first="Rino" last="Rappuoli">Rino Rappuoli</name>
<affiliation>
<nlm:affiliation>GlaxoSmithKline, Brentford, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="eISSN">1749-6632</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vaccines have been incredibly successful at stemming the morbidity and mortality of infectious diseases worldwide. However, there are still no effective vaccines for many serious and potentially preventable infectious diseases. Advances in vaccine technology, including new delivery methods and adjuvants, as well as progress in systems biology and an increased understanding of the human immune system, hold the potential to address these issues. In addition, maternal immunization has opened an avenue to address infectious diseases in neonates and very young infants. This report summarizes the presentations from a 1-day symposium at the New York Academy of Sciences entitled "Innovative Vaccines against Resistant Infectious Diseases and Emerging Threats," held on May 20, 2019.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">31659752</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1749-6632</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1462</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Annals of the New York Academy of Sciences</Title>
<ISOAbbreviation>Ann. N. Y. Acad. Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Vaccine innovations for emerging infectious diseases-a symposium report.</ArticleTitle>
<Pagination>
<MedlinePgn>14-26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nyas.14235</ELocationID>
<Abstract>
<AbstractText>Vaccines have been incredibly successful at stemming the morbidity and mortality of infectious diseases worldwide. However, there are still no effective vaccines for many serious and potentially preventable infectious diseases. Advances in vaccine technology, including new delivery methods and adjuvants, as well as progress in systems biology and an increased understanding of the human immune system, hold the potential to address these issues. In addition, maternal immunization has opened an avenue to address infectious diseases in neonates and very young infants. This report summarizes the presentations from a 1-day symposium at the New York Academy of Sciences entitled "Innovative Vaccines against Resistant Infectious Diseases and Emerging Threats," held on May 20, 2019.</AbstractText>
<CopyrightInformation>© 2019 New York Academy of Sciences.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cable</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Science Writer, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srikantiah</LastName>
<ForeName>Padmini</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Bill & Melinda Gates Foundation, Seattle, Washington.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crowe</LastName>
<ForeName>James E</ForeName>
<Initials>JE</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt University, Nashville, Tennessee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pulendran</LastName>
<ForeName>Bali</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute for Immunity, Transplantation and Infection; Department of Pathology; and Department of Microbiology & Immunology, Stanford University, Stanford, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hill</LastName>
<ForeName>Adrian</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Jenner Institute, University of Oxford, Oxford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ginsberg</LastName>
<ForeName>Ann</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>International AIDS Vaccine Initiative, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koff</LastName>
<ForeName>Wayne</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>The Human Vaccines Project, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mathew</LastName>
<ForeName>Anuja</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ng</LastName>
<ForeName>Tony</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jansen</LastName>
<ForeName>Kathrin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Pfizer, New York, New York.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Glenn</LastName>
<ForeName>Gregory</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Novavax, Rockville, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Permar</LastName>
<ForeName>Sallie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Duke University, Durham, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>Ian</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weiner</LastName>
<ForeName>David B</ForeName>
<Initials>DB</Initials>
<AffiliationInfo>
<Affiliation>Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weissman</LastName>
<ForeName>Drew</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rappuoli</LastName>
<ForeName>Rino</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>GlaxoSmithKline, Brentford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ann N Y Acad Sci</MedlineTA>
<NlmUniqueID>7506858</NlmUniqueID>
<ISSNLinking>0077-8923</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CMV</Keyword>
<Keyword MajorTopicYN="N">DNA vaccine</Keyword>
<Keyword MajorTopicYN="N">Ebola</Keyword>
<Keyword MajorTopicYN="N">HIV</Keyword>
<Keyword MajorTopicYN="N">MERS</Keyword>
<Keyword MajorTopicYN="N">RNA vaccine</Keyword>
<Keyword MajorTopicYN="N">RSV</Keyword>
<Keyword MajorTopicYN="N">Zika</Keyword>
<Keyword MajorTopicYN="N">antimicrobial resistance</Keyword>
<Keyword MajorTopicYN="N">infectious disease</Keyword>
<Keyword MajorTopicYN="N">influenza</Keyword>
<Keyword MajorTopicYN="N">malaria</Keyword>
<Keyword MajorTopicYN="N">maternal immunization</Keyword>
<Keyword MajorTopicYN="N">monoclonal antibodies</Keyword>
<Keyword MajorTopicYN="N">systems vaccinology</Keyword>
<Keyword MajorTopicYN="N">tuberculosis</Keyword>
<Keyword MajorTopicYN="N">vaccine</Keyword>
<Keyword MajorTopicYN="N">vaccinology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31659752</ArticleId>
<ArticleId IdType="doi">10.1111/nyas.14235</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>World Health Organization. 2018. The top 10 causes of death. Accessed June 22, 2019. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.</Citation>
</Reference>
<Reference>
<Citation>United Nations Children's Fund (UNICEF). Vaccines bring 7 diseases under control. Accessed June 22, 2019. https://www.unicef.org/pon96/hevaccin.htm.</Citation>
</Reference>
<Reference>
<Citation>O'Neill, J. 2016. Tackling drug-resistant infections globally: final report and recommendations. Accessed June 22, 2019. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.</Citation>
</Reference>
<Reference>
<Citation>Collignon, P., J.J. Beggs, T.R. Walsh, et al. 2018. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health 2: e398-e405.</Citation>
</Reference>
<Reference>
<Citation>von Gottberg, A. et al. 2014. Effects of vaccination on invasive pneumococcal disease in South Africa. N. Engl. J. Med. 371: 1889-1899.</Citation>
</Reference>
<Reference>
<Citation>Kwong, J.C., S. Maaten, R.E.G. Upshur, et al. 2009. The effect of universal influenza immunization on antibiotic prescriptions: an ecological study. Clin. Infect. Dis. 49: 750-756.</Citation>
</Reference>
<Reference>
<Citation>Royal Society. 2017. The value of vaccines in the avoidance of antimicrobial resistance: Centre on Global Health Security meeting report. Accessed June 22, 2019. https://www.chathamhouse.org/sites/default/files/events/2017-03-30-amr-vaccines-meeting-summary.pdf.</Citation>
</Reference>
<Reference>
<Citation>Moderna, Inc. 2019. Moderna announces dosing of the first monoclonal antibody encoded by mRNA in a clinical trial. Accessed June 22, 2019. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-dosing-first-monoclonal-antibody-encoded-mrna.</Citation>
</Reference>
<Reference>
<Citation>Pallesen, J. et al. 2016. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat. Microbiol. 1: 16128.</Citation>
</Reference>
<Reference>
<Citation>Flyak, A.I. et al. 2015. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160: 893-903.</Citation>
</Reference>
<Reference>
<Citation>Mire, C.E. et al. 2017. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci. Transl. Med. 9. https://doi.org/10.1126/scitranslmed.aai8711.</Citation>
</Reference>
<Reference>
<Citation>Bangaru, S. et al. 2019. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 177: 1136-1152.e18.</Citation>
</Reference>
<Reference>
<Citation>Li, S. et al. 2017. Metabolic phenotypes of response to vaccination in humans. Cell 169: 862-877.e17.</Citation>
</Reference>
<Reference>
<Citation>Kazmin, D. et al. 2017. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc. Natl. Acad. Sci. USA 114: 2425-2430.</Citation>
</Reference>
<Reference>
<Citation>Kasturi, S.P. et al. 2011. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470: 543-547.</Citation>
</Reference>
<Reference>
<Citation>Petitdemange, C. et al. 2019. Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight 4. https://doi.org/10.1172/jci.insight.126047.</Citation>
</Reference>
<Reference>
<Citation>Agnandji, S.T. et al. 2012. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367: 2284-2295.</Citation>
</Reference>
<Reference>
<Citation>European Medicines Agency. 2018. First malaria vaccine receives positive scientific opinion from EMA. Accessed June 23, 2019. https://www.ema.europa.eu/en/news/first-malaria-vaccine-receives-positive-scientific-opinion-ema.</Citation>
</Reference>
<Reference>
<Citation>Klein, S.L., F. Shann, W.J. Moss, et al. 2016. RTS,S malaria vaccine and increased mortality in girls. mBio 7: e00514-e00516.</Citation>
</Reference>
<Reference>
<Citation>WHO. WHO | Q&A on the malaria vaccine implementation programme (MVIP). Accessed June 23, 2019. http://www.who.int/malaria/media/malaria-vaccine-implementation-qa/en/.</Citation>
</Reference>
<Reference>
<Citation>Collins, K.A., R. Snaith, M.G. Cottingham, et al. 2017. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci. Rep. 7. https://doi.org/10.1038/srep46621.</Citation>
</Reference>
<Reference>
<Citation>Clinicaltrials.gov [Internet]. A study to determine if new types of malaria vaccines are safe, effective and lead to immunity in Kenyan adults. Accessed June 23, 2019. https://clinicaltrials.gov/ct2/show/NCT03947190.</Citation>
</Reference>
<Reference>
<Citation>Gola, A. et al. 2018. Prime and target immunization protects against liver-stage malaria in mice. Sci. Transl. Med. 10. https://doi.org/10.1126/scitranslmed.aap9128.</Citation>
</Reference>
<Reference>
<Citation>Ogwang, C. et al. 2015. Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults. Sci. Transl. Med. 7: 286re5.</Citation>
</Reference>
<Reference>
<Citation>World Health Organization. 2018. Global tuberculosis report 2018. Geneva: WHO. Accessed June 23, 2019. https://www.who.int/tb/publications/global_report/en/.</Citation>
</Reference>
<Reference>
<Citation>Nemes, E. et al. 2018. Prevention of M. tuberculosis infection with H4:iC31 vaccine or BCG revaccination. N. Engl. J. Med. 379: 138-149.</Citation>
</Reference>
<Reference>
<Citation>Van Der Meeren, O. et al. 2018. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 379: 1621-1634.</Citation>
</Reference>
<Reference>
<Citation>Tsang, J.S. et al. 2014. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157: 499-513.</Citation>
</Reference>
<Reference>
<Citation>Fourati, S. et al. 2016. Pre-vaccination inflammation and B cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat. Commun. 7. https://doi.org/10.1038/ncomms10369.</Citation>
</Reference>
<Reference>
<Citation>Frasca, D. et al. 2012. Unique biomarkers for B cell function predict the serum response to pandemic H1N1 influenza vaccine. Int. Immunol. 24: 175-182.</Citation>
</Reference>
<Reference>
<Citation>Nakaya, H.I. et al. 2015. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity 43: 1186-1198.</Citation>
</Reference>
<Reference>
<Citation>HIPC-CHI Signatures Project Team & HIPC-I Consortium. 2017. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci. Immunol. 2. https://doi.org/10.1126/sciimmunol.aal4656.</Citation>
</Reference>
<Reference>
<Citation>Wooden, S.L. & W.C. Koff. 2018. The Human Vaccines Project: towards a comprehensive understanding of the human immune response to immunization. Hum. Vaccines Immunother. 14: 2214-2216.</Citation>
</Reference>
<Reference>
<Citation>Adam, A. et al. 2018. Multiplexed FluoroSpot for the analysis of Dengue virus- and Zika virus-specific and cross-reactive memory B cells. J. Immunol. 201: 3804-3814.</Citation>
</Reference>
<Reference>
<Citation>Roopenian, D.C. & S. Akilesh. 2007. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7: 715-725.</Citation>
</Reference>
<Reference>
<Citation>Wilcox, C.R., B. Holder & C.E. Jones. 2017. Factors affecting the FcRn-mediated transplacental transfer of antibodies and implications for vaccination in pregnancy. Front. Immunol. 8. https://doi.org/10.3389/fimmu.2017.01294.</Citation>
</Reference>
<Reference>
<Citation>United Nations Children's Fund (UNICEF). Elimination of maternal and neonatal tetanus. Accessed June 24, 2019. https://www.unicef.org/health/index_43509.html.</Citation>
</Reference>
<Reference>
<Citation>Zaman, K. et al. 2008. Effectiveness of maternal influenza immunization in mothers and infants. N. Engl. J. Med. 359: 1555-1564.</Citation>
</Reference>
<Reference>
<Citation>Munoz, F.M. et al. 2014. Assessment of safety in newborns of mothers participating in clinical trials of vaccines administered during pregnancy. Clin. Infect. Dis. 59(Suppl. 7): S415-S427.</Citation>
</Reference>
<Reference>
<Citation>Donegan, K., B. King & P. Bryan. 2014. Safety of pertussis vaccination in pregnant women in UK: observational study. BMJ 349: g4219.</Citation>
</Reference>
<Reference>
<Citation>Morgan, J.L., S.R. Baggari, D.D. McIntire & J.S. Sheffield. 2015. Pregnancy outcomes after antepartum tetanus, diphtheria, and acellular pertussis vaccination. Obstet. Gynecol. 125: 1433-1438.</Citation>
</Reference>
<Reference>
<Citation>Shakib, J.H. et al. 2013. Tetanus, diphtheria, acellular pertussis vaccine during pregnancy: pregnancy and infant health outcomes. J. Pediatr. 163: 1422-1426.e1-4.</Citation>
</Reference>
<Reference>
<Citation>Bratton, K.N., M.T. Wardle, W.A. Orenstein & S.B. Omer. 2015. Maternal influenza immunization and birth outcomes of stillbirth and spontaneous abortion: a systematic review and meta-analysis. Clin. Infect. Dis. 60: e11-e19.</Citation>
</Reference>
<Reference>
<Citation>Madhi, S.A. et al. 2014. Influenza vaccination of pregnant women and protection of their infants. N. Engl. J. Med. 371: 918-931.</Citation>
</Reference>
<Reference>
<Citation>Sukumaran, L. et al. 2015. Safety of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis and influenza vaccinations in pregnancy. Obstet. Gynecol. 126: 1069-1074.</Citation>
</Reference>
<Reference>
<Citation>World Health Organization. 2014. G. A. C. on V. S. safety of immunization during pregnancy: a review of the evidence. Geneva: World Health Organization.</Citation>
</Reference>
<Reference>
<Citation>Dormitzer, P.R. 2018. Pfizer's RSV vaccine program. Research, Development and Strategic Partnering for the Global Vaccine Industry.</Citation>
</Reference>
<Reference>
<Citation>A study to describe the safety and immunogenicity of a RSV vaccine in healthy adults-full text view-ClinicalTrials.gov. Accessed June 24, 2019. https://clinicaltrials.gov/ct2/show/NCT03529773.</Citation>
</Reference>
<Reference>
<Citation>Buurman, E.T. et al. 2019. A novel hexavalent capsular polysaccharide conjugate vaccine (GBS6) for the prevention of neonatal group B streptococcal infections by maternal immunization. J. Infect. Dis. 220: 105-115.</Citation>
</Reference>
<Reference>
<Citation>A phase 1/2, randomized, placebo-controlled, observer-blinded trial to evaluate the safety, tolerability, and immunogenicity of a multivalent group B streptococcus vaccine in healthy adults 18 to 49 years of age-full text view-ClinicalTrials.gov. Accessed August 9, 2019. https://clinicaltrials.gov/ct2/show/NCT03170609.</Citation>
</Reference>
<Reference>
<Citation>Trial to evaluate the safety, tolerability, and immunogenicity of a multivalent group B streptococcus vaccine in healthy nonpregnant women and pregnant women and their infants-full text view-ClinicalTrials.gov. Accessed August 9, 2019. https://clinicaltrials.gov/ct2/show/NCT03765073.</Citation>
</Reference>
<Reference>
<Citation>Smith, G. et al. 2012. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS One 7: e50852.</Citation>
</Reference>
<Reference>
<Citation>Patel, N. et al. 2019. Respiratory syncytial virus prefusogenic fusion (F) protein nanoparticle vaccine: structure, antigenic profile, immunogenicity, and protection. Vaccine. https://doi.org/10.1016/j.vaccine.2019.07.089.</Citation>
</Reference>
<Reference>
<Citation>Graham, B.S. 2017. Vaccine development for respiratory syncytial virus. Curr. Opin. Virol. 23: 107-112.</Citation>
</Reference>
<Reference>
<Citation>Novavax announces topline results from phase 3 PrepareTM trial of ResVax (TM) for prevention of RSV disease in infants via maternal immunization. Novavax Inc.-IR Site. Accessed June 24, 2019. https://ir.novavax.com/news-releases/news-release-details/novavax-announces-topline-results-phase-3-preparetm-trial.</Citation>
</Reference>
<Reference>
<Citation>Bialas, K.M. et al. 2015. Maternal CD4+ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. Proc. Natl. Acad. Sci. USA 112: 13645-13650.</Citation>
</Reference>
<Reference>
<Citation>Pass, R.F. et al. 2009. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 360: 1191-1199.</Citation>
</Reference>
<Reference>
<Citation>Nelson, C.S. et al. 2018. HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions. Proc. Natl. Acad. Sci. USA 115: 6267-6272.</Citation>
</Reference>
<Reference>
<Citation>Wu, N.C. & I.A. Wilson. 2018. Structural insights into the design of novel anti-influenza therapies. Nat. Struct. Mol. Biol. 25: 115-121.</Citation>
</Reference>
<Reference>
<Citation>Laursen, N.S. et al. 2018. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 362: 598-602.</Citation>
</Reference>
<Reference>
<Citation>Steel, J. et al. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1. https://doi.org/10.1128/mBio.00018-10.</Citation>
</Reference>
<Reference>
<Citation>Impagliazzo, A. et al. 2015. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349: 1301-1306.</Citation>
</Reference>
<Reference>
<Citation>Yassine, H.M. et al. 2015. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21: 1065-1070.</Citation>
</Reference>
<Reference>
<Citation>Corbett, K.S. et al. 2019. Design of nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. mBio 10. https://doi.org/10.1128/mBio.02810-18.</Citation>
</Reference>
<Reference>
<Citation>Oyen, D. et al. 2017. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc. Natl. Acad. Sci. USA 114: E10438-E10445.</Citation>
</Reference>
<Reference>
<Citation>Oyen, D. et al. 2018. Cryo-EM structure of P. falciparum circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. Sci. Adv. 4: eaau8529.</Citation>
</Reference>
<Reference>
<Citation>Tan, J. et al. 2018. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nat. Med. 24: 401-407.</Citation>
</Reference>
<Reference>
<Citation>Trimble, C.L. et al. 2015. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386: 2078-2088.</Citation>
</Reference>
<Reference>
<Citation>REVEAL 1 (Evaluation of VGX-3100 and electroporation for the treatment of cervical HSIL)-full text view-ClinicalTrials.gov. Accessed June 25, 2019. https://clinicaltrials.gov/ct2/show/NCT03185013.</Citation>
</Reference>
<Reference>
<Citation>REVEAL 2 Trial (Evaluation of VGX-3100 and electroporation for the treatment of cervical HSIL)-full text view-ClinicalTrials.gov. Accessed June 25, 2019. https://clinicaltrials.gov/ct2/show/NCT03721978.</Citation>
</Reference>
<Reference>
<Citation>Inovio's novel HPV therapy INO-3106 demonstrates clinical efficacy against rare respiratory tract tumors in pilot clinical study. Accessed June 25, 2019. http://ir.inovio.com/news-and-media/news/press-release-details/2019/Inovios-Novel-HPV-Therapy-INO-3106-Demonstrates-Clinical-Efficacy-Against-Rare-Respiratory-Tract-Tumors-in-Pilot-Clinical-Study/default.aspx.</Citation>
</Reference>
<Reference>
<Citation>Aggarwal, C., B. Halmos & M.A. Porosnicu. 2015. Phase 1b/2a, multi-center, open-label study to evaluate the safety and efficacy of combination treatment with MEDI0457 (INO-3112) and durvalumab (MEDI4736) in patients with recurrent/metastatic human papilloma virus-associated head and neck squamous cell cancer.</Citation>
</Reference>
<Reference>
<Citation>Tebas, P. et al. 2019. Intradermal SynCon® Ebola GP DNA vaccine is temperature stable and safely demonstrates cellular and humoral immunogenicity advantages in healthy volunteers. J. Infect. Dis. https://doi.org/10.1093/infdis/jiz132.</Citation>
</Reference>
<Reference>
<Citation>Inovio's MERS vaccine generates high levels of antibodies and induces broad-based T cell responses in phase 1 study. Accessed June 25, 2019. http://ir.inovio.com/news-and-media/news/press-release-details/2018/Inovios-MERS-Vaccine-Generates-High-Levels-of-Antibodies-and-Induces-Broad-based-T-Cell-Responses-in-Phase-1-Study/default.aspx.</Citation>
</Reference>
<Reference>
<Citation>Tebas, P. et al. 2017. Safety and immunogenicity of an anti-Zika virus DNA vaccine-preliminary report. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1708120.</Citation>
</Reference>
<Reference>
<Citation>Patel, A. et al. 2018. In vivo delivery of synthetic human DNA-encoded monoclonal antibodies protect against Ebolavirus infection in a mouse model. Cell Rep. 25: 1982-1993.e4.</Citation>
</Reference>
<Reference>
<Citation>Esquivel, R.N. et al. 2019. In vivo delivery of a DNA-encoded monoclonal antibody protects non-human primates against Zika virus. Mol. Ther. J. Am. Soc. Gene Ther. 27: 974-985.</Citation>
</Reference>
<Reference>
<Citation>First-in-class DNA-encoded monoclonal antibody therapy rapidly advances into the clinic. Wistar Institute. Accessed June 25, 2019. https://wistar.org/news/press-releases/first-class-dna-encoded-monoclonal-antibody-therapy-rapidly-advances-clinic.</Citation>
</Reference>
<Reference>
<Citation>Anderson, B.R. et al. 2011. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39: 9329-9338.</Citation>
</Reference>
<Reference>
<Citation>Pardi, N. et al. 2017. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 8: 14630.</Citation>
</Reference>
<Reference>
<Citation>Rappuoli, R., M.J. Bottomley, U. D'Oro, et al. 2016. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J. Exp. Med. 213: 469-481.</Citation>
</Reference>
<Reference>
<Citation>Shi, S. et al. 2019. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine 37: 3167-3178.</Citation>
</Reference>
<Reference>
<Citation>Lal, H. et al. 2015. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 372: 2087-2096.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31659752
   |texte=   Vaccine innovations for emerging infectious diseases-a symposium report.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31659752" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021