Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.

Identifieur interne : 000291 ( PubMed/Corpus ); précédent : 000290; suivant : 000292

Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.

Auteurs : Yurij Ionov ; Artem S. Rogovskyy

Source :

RBID : pubmed:31940357

English descriptors

Abstract

Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.

DOI: 10.1371/journal.pone.0226378
PubMed: 31940357

Links to Exploration step

pubmed:31940357

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.</title>
<author>
<name sortKey="Ionov, Yurij" sort="Ionov, Yurij" uniqKey="Ionov Y" first="Yurij" last="Ionov">Yurij Ionov</name>
<affiliation>
<nlm:affiliation>Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rogovskyy, Artem S" sort="Rogovskyy, Artem S" uniqKey="Rogovskyy A" first="Artem S" last="Rogovskyy">Artem S. Rogovskyy</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31940357</idno>
<idno type="pmid">31940357</idno>
<idno type="doi">10.1371/journal.pone.0226378</idno>
<idno type="wicri:Area/PubMed/Corpus">000291</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.</title>
<author>
<name sortKey="Ionov, Yurij" sort="Ionov, Yurij" uniqKey="Ionov Y" first="Yurij" last="Ionov">Yurij Ionov</name>
<affiliation>
<nlm:affiliation>Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rogovskyy, Artem S" sort="Rogovskyy, Artem S" uniqKey="Rogovskyy A" first="Artem S" last="Rogovskyy">Artem S. Rogovskyy</name>
<affiliation>
<nlm:affiliation>Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Animals</term>
<term>Bioprospecting (methods)</term>
<term>Borrelia burgdorferi (immunology)</term>
<term>Immune Sera (chemistry)</term>
<term>Immune Sera (immunology)</term>
<term>Peptide Library</term>
<term>Rabbits</term>
<term>Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Immune Sera</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Borrelia burgdorferi</term>
<term>Immune Sera</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Bioprospecting</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Animals</term>
<term>Peptide Library</term>
<term>Rabbits</term>
<term>Sequence Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31940357</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.</ArticleTitle>
<Pagination>
<MedlinePgn>e0226378</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0226378</ELocationID>
<Abstract>
<AbstractText>Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ionov</LastName>
<ForeName>Yurij</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-7174-386X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rogovskyy</LastName>
<ForeName>Artem S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007106">Immune Sera</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019151">Peptide Library</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065132" MajorTopicYN="N">Bioprospecting</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025065" MajorTopicYN="N">Borrelia burgdorferi</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007106" MajorTopicYN="N">Immune Sera</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019151" MajorTopicYN="Y">Peptide Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017421" MajorTopicYN="Y">Sequence Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31940357</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0226378</ArticleId>
<ArticleId IdType="pii">PONE-D-19-21468</ArticleId>
<ArticleId IdType="pmc">PMC6961823</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2003 Jan;21(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12496764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1999 Dec;37(12):3997-4004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10565921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ann Med. 1999 Jun;31(3):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10442678</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 1993 Mar;167(3):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440936</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 1990 Nov 22;323(21):1438-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2172819</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Jun 27;8(6):e67181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23826227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1991 May;29(5):894-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2056054</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1987 Aug;25(8):1564-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3624451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2008;319:63-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18080415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Probl Dermatol. 2009;37:31-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367096</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1984 Dec;20(6):1099-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6520220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1994 May 1;13(9):2236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514533</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biotechnol. 2013 Jan;31(1):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23219199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Microbiol. 2010 Jun 15;10:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2005 May 20;107(3-4):285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863289</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Pathol. 2000 Jan;37(1):68-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10643983</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Dermatopathol. 2011 Oct;33(7):712-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21946761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 1993 Sep;143(3):959-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8362988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Proteomics. 2016 Apr;15(4):1360-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncotarget. 2010 Jun;1(2):148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711419</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2019 Jul 23;87(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31085705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Apr 08;8(4):e61226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593438</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 1990 Jul;162(1):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2141344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2003 Jul;71(7):3699-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12819050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Biochem. 2001 May;268(10):2856-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11358501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomed Sci. 2016 Jan 19;23:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26786672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2019 Jun 20;87(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30988058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2017 Jul 6;22(27):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28703098</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 1988 Apr;157(4):842-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3258003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Jul 1;309(5731):105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2009;570:3-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19649587</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Med J Aust. 1998 May 18;168(10):500-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9631675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Infect. 2011 Jan;17(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Jan 09;10(2):87-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22230951</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):E3072-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25024171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Vet Intern Med. 2018 May;32(3):887-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29566442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Dec;263(1-2):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3554844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 1997 Jan;35(1):111-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8968890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Mar 10;287(5459):1816-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10710308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Vet Res. 1988 Jun;49(6):752-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3041881</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 1995 Aug;96(2):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7635989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2004 Sep;165(3):977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2011 Jul 07;16(27):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21794218</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 1996 Apr 26;58(1-2):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8783147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2002 Aug;70(8):4196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12117928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Dec;263(1-2):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3577490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2010 Oct 29;33(4):530-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029963</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2015 Aug 06;5:12913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246327</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106398</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2004 Nov;72(11):6577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501789</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Entomol. 1993 May;30(3):614-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8510121</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2001 Jan;69(1):446-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11119536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 1990 Jan 25;322(4):249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2294450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2016 May 17;17(6):333-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27184599</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2000 Jun;38(6):2191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10834975</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969447</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1989 Nov;57(11):3445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2807530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microb Pathog. 2008 Nov-Dec;45(5-6):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infection. 1990 Nov-Dec;18(6):332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2076905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 May;52(5):1728-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 1994 Mar;169(3):568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8158028</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lab Invest. 1995 Feb;72(2):146-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7853849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Glycobiology. 2012 Mar;22(3):318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930649</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 2007 Aug;50(3):421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Parasitol. 1995 Apr;81(2):175-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7707191</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1993 Jul;61(7):3047-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8514412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2013 May 01;3(5):a012476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(8):e41469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870226</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1993 Nov;61(11):4777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8406878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2016 Dec 29;85(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799330</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Apr 20;10(4):e0124268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25893989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 1999 May 15;162(10):6155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10229859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2012 Apr 10;3(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Feb;7(2):247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897933</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2015;1248:249-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25616338</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1997 Apr 18;89(2):275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2002 Apr;70(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11895980</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(7):e40201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22815729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Biotechnol. 1996 Dec;7(6):616-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Immunol. 2011 Oct;141(1):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778118</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2014 Sep 1;59(5):676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24879782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 18;107(20):9072-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439758</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20368420</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Healthcare (Basel). 2018 Apr 14;6(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29662016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2018 Jul 23;86(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29866906</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2019 Sep 6;14(9):e0217668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31490930</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ecohealth. 2005 Mar;2(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19008966</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Apr;11(4):M111.011593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22261726</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 2010 Jun;192(11):2852-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2007 Sep;65(6):1547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1990 Jul 27;249(4967):386-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1696028</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2014 Sep 03;5:4785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25183057</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2003 Aug;71(8):4608-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12874340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2001 Dec;69(12):7437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000291 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000291 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31940357
   |texte=   Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31940357" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021