Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.

Identifieur interne : 000279 ( PubMed/Corpus ); précédent : 000278; suivant : 000280

Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.

Auteurs : Hannah Kleine-Weber ; Simon Schroeder ; Nadine Krüger ; Alexander Prokscha ; Hassan Y. Naim ; Marcel A. Müller ; Christian Drosten ; Stefan Pöhlmann ; Markus Hoffmann

Source :

RBID : pubmed:31964246

Abstract

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) causes a severe respiratory disease in humans. The MERS-CoV spike (S) glycoprotein mediates viral entry into target cells. For this, MERS-CoV S engages the host cell protein dipeptidyl peptidase 4 (DPP4, CD26) and the interface between MERS-CoV S and DPP4 has been resolved on the atomic level. Here, we asked whether naturally-occurring polymorphisms in DPP4, that alter amino acid residues required for MERS-CoV S binding, influence cellular entry of MERS-CoV. By screening of public databases, we identified fourteen such polymorphisms. Introduction of the respective mutations into DPP4 revealed that all except one (Δ346-348) were compatible with robust DPP4 expression. Four polymorphisms (K267E, K267N, A291P and Δ346-348) strongly reduced binding of MERS-CoV S to DPP4 and S protein-driven host cell entry, as determined using soluble S protein and S protein bearing rhabdoviral vectors, respectively. Two polymorphisms (K267E and A291P) were analyzed in the context of authentic MERS-CoV and were found to attenuate viral replication. Collectively, we identified naturally-occurring polymorphisms in DPP4 that negatively impact cellular entry of MERS-CoV and might thus modulate MERS development in infected patients.

DOI: 10.1080/22221751.2020.1713705
PubMed: 31964246

Links to Exploration step

pubmed:31964246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Kleine Weber, Hannah" sort="Kleine Weber, Hannah" uniqKey="Kleine Weber H" first="Hannah" last="Kleine-Weber">Hannah Kleine-Weber</name>
<affiliation>
<nlm:affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, Simon" sort="Schroeder, Simon" uniqKey="Schroeder S" first="Simon" last="Schroeder">Simon Schroeder</name>
<affiliation>
<nlm:affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kruger, Nadine" sort="Kruger, Nadine" uniqKey="Kruger N" first="Nadine" last="Krüger">Nadine Krüger</name>
<affiliation>
<nlm:affiliation>Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prokscha, Alexander" sort="Prokscha, Alexander" uniqKey="Prokscha A" first="Alexander" last="Prokscha">Alexander Prokscha</name>
<affiliation>
<nlm:affiliation>Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Naim, Hassan Y" sort="Naim, Hassan Y" uniqKey="Naim H" first="Hassan Y" last="Naim">Hassan Y. Naim</name>
<affiliation>
<nlm:affiliation>Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
<affiliation>
<nlm:affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<affiliation>
<nlm:affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
<affiliation>
<nlm:affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Markus" sort="Hoffmann, Markus" uniqKey="Hoffmann M" first="Markus" last="Hoffmann">Markus Hoffmann</name>
<affiliation>
<nlm:affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31964246</idno>
<idno type="pmid">31964246</idno>
<idno type="doi">10.1080/22221751.2020.1713705</idno>
<idno type="wicri:Area/PubMed/Corpus">000279</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Kleine Weber, Hannah" sort="Kleine Weber, Hannah" uniqKey="Kleine Weber H" first="Hannah" last="Kleine-Weber">Hannah Kleine-Weber</name>
<affiliation>
<nlm:affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, Simon" sort="Schroeder, Simon" uniqKey="Schroeder S" first="Simon" last="Schroeder">Simon Schroeder</name>
<affiliation>
<nlm:affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kruger, Nadine" sort="Kruger, Nadine" uniqKey="Kruger N" first="Nadine" last="Krüger">Nadine Krüger</name>
<affiliation>
<nlm:affiliation>Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Prokscha, Alexander" sort="Prokscha, Alexander" uniqKey="Prokscha A" first="Alexander" last="Prokscha">Alexander Prokscha</name>
<affiliation>
<nlm:affiliation>Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Naim, Hassan Y" sort="Naim, Hassan Y" uniqKey="Naim H" first="Hassan Y" last="Naim">Hassan Y. Naim</name>
<affiliation>
<nlm:affiliation>Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A" last="Müller">Marcel A. Müller</name>
<affiliation>
<nlm:affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
<affiliation>
<nlm:affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pohlmann, Stefan" sort="Pohlmann, Stefan" uniqKey="Pohlmann S" first="Stefan" last="Pöhlmann">Stefan Pöhlmann</name>
<affiliation>
<nlm:affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Markus" sort="Hoffmann, Markus" uniqKey="Hoffmann M" first="Markus" last="Hoffmann">Markus Hoffmann</name>
<affiliation>
<nlm:affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Emerging microbes & infections</title>
<idno type="eISSN">2222-1751</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) causes a severe respiratory disease in humans. The MERS-CoV spike (S) glycoprotein mediates viral entry into target cells. For this, MERS-CoV S engages the host cell protein dipeptidyl peptidase 4 (DPP4, CD26) and the interface between MERS-CoV S and DPP4 has been resolved on the atomic level. Here, we asked whether naturally-occurring polymorphisms in DPP4, that alter amino acid residues required for MERS-CoV S binding, influence cellular entry of MERS-CoV. By screening of public databases, we identified fourteen such polymorphisms. Introduction of the respective mutations into DPP4 revealed that all except one (Δ346-348) were compatible with robust DPP4 expression. Four polymorphisms (K267E, K267N, A291P and Δ346-348) strongly reduced binding of MERS-CoV S to DPP4 and S protein-driven host cell entry, as determined using soluble S protein and S protein bearing rhabdoviral vectors, respectively. Two polymorphisms (K267E and A291P) were analyzed in the context of authentic MERS-CoV and were found to attenuate viral replication. Collectively, we identified naturally-occurring polymorphisms in DPP4 that negatively impact cellular entry of MERS-CoV and might thus modulate MERS development in infected patients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31964246</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2222-1751</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Emerging microbes & infections</Title>
<ISOAbbreviation>Emerg Microbes Infect</ISOAbbreviation>
</Journal>
<ArticleTitle>Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>155-168</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/22221751.2020.1713705</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) causes a severe respiratory disease in humans. The MERS-CoV spike (S) glycoprotein mediates viral entry into target cells. For this, MERS-CoV S engages the host cell protein dipeptidyl peptidase 4 (DPP4, CD26) and the interface between MERS-CoV S and DPP4 has been resolved on the atomic level. Here, we asked whether naturally-occurring polymorphisms in DPP4, that alter amino acid residues required for MERS-CoV S binding, influence cellular entry of MERS-CoV. By screening of public databases, we identified fourteen such polymorphisms. Introduction of the respective mutations into DPP4 revealed that all except one (Δ346-348) were compatible with robust DPP4 expression. Four polymorphisms (K267E, K267N, A291P and Δ346-348) strongly reduced binding of MERS-CoV S to DPP4 and S protein-driven host cell entry, as determined using soluble S protein and S protein bearing rhabdoviral vectors, respectively. Two polymorphisms (K267E and A291P) were analyzed in the context of authentic MERS-CoV and were found to attenuate viral replication. Collectively, we identified naturally-occurring polymorphisms in DPP4 that negatively impact cellular entry of MERS-CoV and might thus modulate MERS development in infected patients.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kleine-Weber</LastName>
<ForeName>Hannah</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schroeder</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krüger</LastName>
<ForeName>Nadine</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-4413-8699</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prokscha</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Naim</LastName>
<ForeName>Hassan Y</ForeName>
<Initials>HY</Initials>
<Identifier Source="ORCID">0000-0003-4884-8425</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Marcel A</ForeName>
<Initials>MA</Initials>
<Identifier Source="ORCID">0000-0003-2242-5117</Identifier>
<AffiliationInfo>
<Affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>German Centre for Infection Research, associated partner Charité, Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Drosten</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>German Centre for Infection Research, associated partner Charité, Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pöhlmann</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-6086-9136</Identifier>
<AffiliationInfo>
<Affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-4603-7696</Identifier>
<AffiliationInfo>
<Affiliation>Infection Biology Unit, German Primate Center, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Emerg Microbes Infect</MedlineTA>
<NlmUniqueID>101594885</NlmUniqueID>
<ISSNLinking>2222-1751</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Middle East respiratory syndrome coronavirus</Keyword>
<Keyword MajorTopicYN="Y">dipeptidyl peptidase 4</Keyword>
<Keyword MajorTopicYN="Y">polymorphisms</Keyword>
<Keyword MajorTopicYN="Y">receptor binding</Keyword>
<Keyword MajorTopicYN="Y">spike glycoprotein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31964246</ArticleId>
<ArticleId IdType="doi">10.1080/22221751.2020.1713705</ArticleId>
<ArticleId IdType="pmc">PMC7006675</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 1;29(1):308-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125122</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2014 Aug 28;371(9):828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25162889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Regul Pept. 1999 Nov 30;85(1):9-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588446</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Osong Public Health Res Perspect. 2015 Aug;6(4):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26473095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Apr 14;90(9):4838-4842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12):1999-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25418529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2015 Nov;21(11):1981-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26484549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7306-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(10):e25858</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21998709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Neuropeptides. 2016 Dec;60:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27585937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Aug;20(8):1339-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Aug;88(16):9220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24899185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Aug;20(8):1319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Immunol. 2008 Jun;29(6):295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Diabetol Metab Syndr. 2017 Apr 24;9:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28450900</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Leukoc Biol. 2016 Jun;99(6):955-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26744452</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Lett. 1997 Jun;58(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9436466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2012 Sep 27;17(39):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041020</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2015;20(49):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26676406</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jun;78(12):6134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Aug 17;536(7616):285-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27535533</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2017 Dec 7;12(12):e0189073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29216247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Exp Immunol. 2016 Jul;185(1):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26919392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Sep;13(9):752-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMJ Open Diabetes Res Care. 2017 Nov 6;5(1):e000393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29188065</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2014 Dec;471-473:49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Clin Pract. 2006 Nov;60(11):1454-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2015 Jun 25;20(25):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132766</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Neuropeptides. 2012 Dec;46(6):367-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2019 Jan 4;93(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30404801</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Aug 30;8(8):e72942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2016 Apr 25;11(4):e0154369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27111895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23835475</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2016 Mar 30;11(3):e0152134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27028521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Microbiol. 2019 Jun 19;10:1326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31275264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26432245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Database (Oxford). 2018 Jan 1;2018:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30576484</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2013 Jul 26;5(8):1924-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23896748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2015 Feb 26;372(9):846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2014 Jun 26;370(26):2499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24896817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12):2093-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Oct 03;8(10):e76469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Endocrinol (Lausanne). 2019 Feb 15;10:80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30828317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2014 Nov 1;59(9):1225-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24829216</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2018;1685:43-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29086303</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2013 Sep 05;18(36):pii=20574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24079378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3144-3149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29507189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000279 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000279 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31964246
   |texte=   Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31964246" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021