Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unique k-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.

Identifieur interne : 000253 ( PubMed/Corpus ); précédent : 000252; suivant : 000254

Unique k-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.

Auteurs : Valery V. Panyukov ; Sergey S. Kiselev ; Olga N. Ozoline

Source :

RBID : pubmed:32023871

Abstract

The need for a comparative analysis of natural metagenomes stimulated the development of new methods for their taxonomic profiling. Alignment-free approaches based on the search for marker k-mers turned out to be capable of identifying not only species, but also strains of microorganisms with known genomes. Here, we evaluated the ability of genus-specific k-mers to distinguish eight phylogroups of Escherichia coli (A, B1, C, E, D, F, G, B2) and assessed the presence of their unique 22-mers in clinical samples from microbiomes of four healthy people and four patients with Crohn's disease. We found that a phylogenetic tree inferred from the pairwise distance matrix for unique 18-mers and 22-mers of 124 genomes was fully consistent with the topology of the tree, obtained with concatenated aligned sequences of orthologous genes. Therefore, we propose strain-specific "barcodes" for rapid phylotyping. Using unique 22-mers for taxonomic analysis, we detected microbes of all groups in human microbiomes; however, their presence in the five samples was significantly different. Pointing to the intraspecies heterogeneity of E. coli in the natural microflora, this also indicates the feasibility of further studies of the role of this heterogeneity in maintaining population homeostasis.

DOI: 10.3390/ijms21030944
PubMed: 32023871

Links to Exploration step

pubmed:32023871

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unique
<i>k</i>
-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.</title>
<author>
<name sortKey="Panyukov, Valery V" sort="Panyukov, Valery V" uniqKey="Panyukov V" first="Valery V" last="Panyukov">Valery V. Panyukov</name>
<affiliation>
<nlm:affiliation>Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiselev, Sergey S" sort="Kiselev, Sergey S" uniqKey="Kiselev S" first="Sergey S" last="Kiselev">Sergey S. Kiselev</name>
<affiliation>
<nlm:affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ozoline, Olga N" sort="Ozoline, Olga N" uniqKey="Ozoline O" first="Olga N" last="Ozoline">Olga N. Ozoline</name>
<affiliation>
<nlm:affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32023871</idno>
<idno type="pmid">32023871</idno>
<idno type="doi">10.3390/ijms21030944</idno>
<idno type="wicri:Area/PubMed/Corpus">000253</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000253</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Unique
<i>k</i>
-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.</title>
<author>
<name sortKey="Panyukov, Valery V" sort="Panyukov, Valery V" uniqKey="Panyukov V" first="Valery V" last="Panyukov">Valery V. Panyukov</name>
<affiliation>
<nlm:affiliation>Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kiselev, Sergey S" sort="Kiselev, Sergey S" uniqKey="Kiselev S" first="Sergey S" last="Kiselev">Sergey S. Kiselev</name>
<affiliation>
<nlm:affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ozoline, Olga N" sort="Ozoline, Olga N" uniqKey="Ozoline O" first="Olga N" last="Ozoline">Olga N. Ozoline</name>
<affiliation>
<nlm:affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The need for a comparative analysis of natural metagenomes stimulated the development of new methods for their taxonomic profiling. Alignment-free approaches based on the search for marker
<i>k</i>
-mers turned out to be capable of identifying not only species, but also strains of microorganisms with known genomes. Here, we evaluated the ability of genus-specific
<i>k</i>
-mers to distinguish eight phylogroups of
<i>Escherichia coli</i>
(A, B1, C, E, D, F, G, B2) and assessed the presence of their unique 22-mers in clinical samples from microbiomes of four healthy people and four patients with Crohn's disease. We found that a phylogenetic tree inferred from the pairwise distance matrix for unique 18-mers and 22-mers of 124 genomes was fully consistent with the topology of the tree, obtained with concatenated aligned sequences of orthologous genes. Therefore, we propose strain-specific "barcodes" for rapid phylotyping. Using unique 22-mers for taxonomic analysis, we detected microbes of all groups in human microbiomes; however, their presence in the five samples was significantly different. Pointing to the intraspecies heterogeneity of
<i>E. coli</i>
in the natural microflora, this also indicates the feasibility of further studies of the role of this heterogeneity in maintaining population homeostasis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32023871</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Unique
<i>k</i>
-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E944</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms21030944</ELocationID>
<Abstract>
<AbstractText>The need for a comparative analysis of natural metagenomes stimulated the development of new methods for their taxonomic profiling. Alignment-free approaches based on the search for marker
<i>k</i>
-mers turned out to be capable of identifying not only species, but also strains of microorganisms with known genomes. Here, we evaluated the ability of genus-specific
<i>k</i>
-mers to distinguish eight phylogroups of
<i>Escherichia coli</i>
(A, B1, C, E, D, F, G, B2) and assessed the presence of their unique 22-mers in clinical samples from microbiomes of four healthy people and four patients with Crohn's disease. We found that a phylogenetic tree inferred from the pairwise distance matrix for unique 18-mers and 22-mers of 124 genomes was fully consistent with the topology of the tree, obtained with concatenated aligned sequences of orthologous genes. Therefore, we propose strain-specific "barcodes" for rapid phylotyping. Using unique 22-mers for taxonomic analysis, we detected microbes of all groups in human microbiomes; however, their presence in the five samples was significantly different. Pointing to the intraspecies heterogeneity of
<i>E. coli</i>
in the natural microflora, this also indicates the feasibility of further studies of the role of this heterogeneity in maintaining population homeostasis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Panyukov</LastName>
<ForeName>Valery V</ForeName>
<Initials>VV</Initials>
<AffiliationInfo>
<Affiliation>Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kiselev</LastName>
<ForeName>Sergey S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ozoline</LastName>
<ForeName>Olga N</ForeName>
<Initials>ON</Initials>
<AffiliationInfo>
<Affiliation>Structural and Functional Genomics Group, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>18-14-00348</GrantID>
<Agency>Russian Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>18-07-00899</GrantID>
<Agency>Российский Фонд Фундаментальных Исследований (РФФИ)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">alignment-free algorithms</Keyword>
<Keyword MajorTopicYN="N">bacterial genomes</Keyword>
<Keyword MajorTopicYN="N">genome barcodes</Keyword>
<Keyword MajorTopicYN="N">human microbiome</Keyword>
<Keyword MajorTopicYN="N">k-mers</Keyword>
<Keyword MajorTopicYN="N">metagenomes</Keyword>
<Keyword MajorTopicYN="N">phylogenetic trees</Keyword>
<Keyword MajorTopicYN="N">phylotyping</Keyword>
<Keyword MajorTopicYN="N">taxonomic profiling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32023871</ArticleId>
<ArticleId IdType="pii">ijms21030944</ArticleId>
<ArticleId IdType="doi">10.3390/ijms21030944</ArticleId>
<ArticleId IdType="pmc">PMC7037511</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomol Struct Dyn. 1989 Aug;7(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2684223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2017 Sep 14;12(9):e0184720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28910381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Aug;79(16):5085-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Announc. 2013 Oct 24;1(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24158560</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2015 Mar 25;16:236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2017 Feb 15;33(4):574-576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27797770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2014 Mar 03;15(3):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24580807</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mSphere. 2016 Jun 29;1(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27390780</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2018 Jan 1;34(1):171-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036588</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2015 Sep 21;16:717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391348</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Aug 15;9(8):e104400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25126841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2017 Oct 3;18(1):186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28974235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2008 Nov 26;9:560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036134</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013;8(2):e57923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23460914</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2018 Oct 17;19(1):383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30332990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2010 Aug;7(8):576-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20676076</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2019 Oct 16;9(1):14882</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31619717</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Announc. 2018 May 10;6(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29748413</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1981;17(6):368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7288891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2019 Aug 13;10(1):3643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31409795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2018 Oct 22;14(10):e1006434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30346947</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol Rep. 2013 Feb;5(1):58-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23757131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbes Infect. 2006 Jun;8(7):1702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genet Res (Camb). 2018 Sep 17;100:e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30221607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2014 Apr;42(8):e67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24523352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27137889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1995 Jul;12(4):546-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7659011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2012 Sep 07;12:174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22958895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2004 Jun;21(6):1085-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2018 Nov 16;19(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30445993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2019 Sep 23;15(9):e1008029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31545853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2011 Mar;21(3):487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209072</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Negl Trop Dis. 2019 Nov 20;13(11):e0007828</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31747410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2008 Jul 30;3(7):e2836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665274</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Oct;80(19):5955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063650</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2008 Oct;10(10):2484-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Genet Evol. 2011 Apr;11(3):654-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2013 Apr;31(4):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23475072</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">270744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PeerJ. 2018 Aug 22;6:e5515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30155371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2015 May;83(5):1749-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25667270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Jul;83(14):5155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3460087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2017 Nov;211:6-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29102123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2015 May 26;43(10):e69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25765641</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Microbiol. 2009 Dec 29;9:273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040078</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Jul 01;6:28970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27363362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2002 Jan;12(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2018 Feb 1;35(2):518-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29077904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Oct;66(10):4555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11010916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol Struct Dyn. 1986 Aug;4(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3078230</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2008 Oct 31;9:517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2010 Oct 15;26(20):2526-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20834037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2016 Dec 7;5(12):e122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924811</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2011 May 12;473(7346):174-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2011 Nov 10;365(19):1763-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22029753</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2006 Jun;60(5):1136-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16689791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2011 Nov 10;365(19):1771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21696328</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol. 2019 Aug;21(8):3107-3117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31188527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2016 Sep 26;17(1):754</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27671088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2011 Nov 08;29(11):987-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22068540</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2012 Apr 16;13(9):R79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013615</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2014 Oct 09;15:882</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25297974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2017 Dec 14;13(12):960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242367</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2010;11(11):R116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114842</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2016 Jun 20;17(1):132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27323842</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Brief Bioinform. 2019 Jul 19;20(4):1125-1136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29028872</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mSystems. 2019 Aug 6;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31387929</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Syst Appl Microbiol. 2015 Jun;38(4):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25959541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Microbiol Rep. 2015 Aug;7(4):642-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26034010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2013 Feb 1;29(3):308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbiology. 2015 May;161(Pt 5):980-988</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Gigascience. 2015 Oct 19;4:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26500767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000253 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000253 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32023871
   |texte=   Unique k-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32023871" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021