Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants.

Identifieur interne : 000015 ( PubMed/Corpus ); précédent : 000014; suivant : 000016

Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants.

Auteurs : Muhammad Tahir Ul Qamar ; Safar M. Alqahtani ; Mubarak A. Alamri ; Ling-Ling Chen

Source :

RBID : pubmed:32296570

Abstract

The recent outbreak of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in December 2019 raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle. 3CLpro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CLpro sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.

DOI: 10.1016/j.jpha.2020.03.009
PubMed: 32296570

Links to Exploration step

pubmed:32296570

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural basis of SARS-CoV-2 3CL
<sup>pro</sup>
and anti-COVID-19 drug discovery from medicinal plants.</title>
<author>
<name sortKey="Ul Qamar, Muhammad Tahir" sort="Ul Qamar, Muhammad Tahir" uniqKey="Ul Qamar M" first="Muhammad Tahir" last="Ul Qamar">Muhammad Tahir Ul Qamar</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alqahtani, Safar M" sort="Alqahtani, Safar M" uniqKey="Alqahtani S" first="Safar M" last="Alqahtani">Safar M. Alqahtani</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11323, Alkarj, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alamri, Mubarak A" sort="Alamri, Mubarak A" uniqKey="Alamri M" first="Mubarak A" last="Alamri">Mubarak A. Alamri</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11323, Alkarj, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ling Ling" sort="Chen, Ling Ling" uniqKey="Chen L" first="Ling-Ling" last="Chen">Ling-Ling Chen</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32296570</idno>
<idno type="pmid">32296570</idno>
<idno type="doi">10.1016/j.jpha.2020.03.009</idno>
<idno type="wicri:Area/PubMed/Corpus">000015</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000015</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural basis of SARS-CoV-2 3CL
<sup>pro</sup>
and anti-COVID-19 drug discovery from medicinal plants.</title>
<author>
<name sortKey="Ul Qamar, Muhammad Tahir" sort="Ul Qamar, Muhammad Tahir" uniqKey="Ul Qamar M" first="Muhammad Tahir" last="Ul Qamar">Muhammad Tahir Ul Qamar</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alqahtani, Safar M" sort="Alqahtani, Safar M" uniqKey="Alqahtani S" first="Safar M" last="Alqahtani">Safar M. Alqahtani</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11323, Alkarj, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alamri, Mubarak A" sort="Alamri, Mubarak A" uniqKey="Alamri M" first="Mubarak A" last="Alamri">Mubarak A. Alamri</name>
<affiliation>
<nlm:affiliation>Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11323, Alkarj, Saudi Arabia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ling Ling" sort="Chen, Ling Ling" uniqKey="Chen L" first="Ling-Ling" last="Chen">Ling-Ling Chen</name>
<affiliation>
<nlm:affiliation>College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of pharmaceutical analysis</title>
<idno type="eISSN">2214-0883</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The recent outbreak of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in December 2019 raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CL
<sup>pro</sup>
) enzyme controls coronavirus replication and is essential for its life cycle. 3CL
<sup>pro</sup>
is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CL
<sup>pro</sup>
sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32296570</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2214-0883</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Journal of pharmaceutical analysis</Title>
<ISOAbbreviation>J Pharm Anal</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural basis of SARS-CoV-2 3CL
<sup>pro</sup>
and anti-COVID-19 drug discovery from medicinal plants.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jpha.2020.03.009</ELocationID>
<Abstract>
<AbstractText>The recent outbreak of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in December 2019 raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CL
<sup>pro</sup>
) enzyme controls coronavirus replication and is essential for its life cycle. 3CL
<sup>pro</sup>
is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CL
<sup>pro</sup>
sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.</AbstractText>
<CopyrightInformation>.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ul Qamar</LastName>
<ForeName>Muhammad Tahir</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alqahtani</LastName>
<ForeName>Safar M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11323, Alkarj, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alamri</LastName>
<ForeName>Mubarak A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11323, Alkarj, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Ling-Ling</ForeName>
<Initials>LL</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, PR China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>J Pharm Anal</MedlineTA>
<NlmUniqueID>101579451</NlmUniqueID>
<ISSNLinking>2214-0883</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Molecular docking</Keyword>
<Keyword MajorTopicYN="N">Molecular dynamics simulation</Keyword>
<Keyword MajorTopicYN="N">Natural products</Keyword>
<Keyword MajorTopicYN="N">Protein homology modelling</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
</KeywordList>
<CoiStatement>The author(s) declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32296570</ArticleId>
<ArticleId IdType="doi">10.1016/j.jpha.2020.03.009</ArticleId>
<ArticleId IdType="pii">S2095-1779(20)30127-1</ArticleId>
<ArticleId IdType="pmc">PMC7156227</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):270-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem. 2016 Jul 1;24(13):3035-3042</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27240464</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25945576</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2020 Apr;92(4):418-423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31967327</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci China Life Sci. 2020 Mar;63(3):457-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32009228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Nat Prod. 2006 Jan;69(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441066</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Inf Model. 2012 Nov 26;52(11):3099-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23092397</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2016 Jul 28;59(14):6595-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26878082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Aided Mol Des. 1996 Jun;10(3):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8808741</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2020 Feb 20;382(8):727-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31978945</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2019 Jan 9;9(1):1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30626917</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Prod Res. 2017 Jun;31(11):1228-1236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27681445</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2020 Apr;92(4):433-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31967321</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Sep 8;302(1):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Med Chem. 2008;8(18):1555-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformation. 2013 Dec 06;9(19):993-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391364</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000015 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000015 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32296570
   |texte=   Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32296570" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021