Serveur d'exploration MERS - Checkpoint (PubMed)

Index « Mesh.i » - entrée « Support Vector Machine »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Supervised Machine Learning < Support Vector Machine < Surface Plasmon Resonance  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 15.
Ident.Authors (with country if any)Title
000388 (2019) Laura L. Colbran [États-Unis] ; Ling Chen [États-Unis] ; John A. Capra [États-Unis]Sequence Characteristics Distinguish Transcribed Enhancers from Promoters and Predict Their Breadth of Activity.
000984 (2018) Han Li [États-Unis] ; Fengzhu Sun [États-Unis]Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences.
000A91 (2017) Abdulkadir Elmas [États-Unis] ; Xiaodong Wang [États-Unis] ; Jacqueline M. Dresch [États-Unis]The folded k-spectrum kernel: A machine learning approach to detecting transcription factor binding sites with gapped nucleotide dependencies.
000D21 (2017) Yuan Jiang [République populaire de Chine] ; Jun Wang [République populaire de Chine] ; Dawen Xia [République populaire de Chine] ; Guoxian Yu [République populaire de Chine]EnSVMB: Metagenomics Fragments Classification using Ensemble SVM and BLAST.
000F22 (2016) Rong Wang [République populaire de Chine] ; Yong Xu [République populaire de Chine] ; Bin Liu [République populaire de Chine]Recombination spot identification Based on gapped k-mers.
001171 (2016) Katherine Gurdziel [États-Unis] ; Kyle R. Vogt [États-Unis] ; Gary Schneider [États-Unis] ; Neil Richards [États-Unis] ; Deborah L. Gumucio [États-Unis]Computational prediction and experimental validation of novel Hedgehog-responsive enhancers linked to genes of the Hedgehog pathway.
001388 (2015) Massimo La Rosa ; Antonino Fiannaca ; Riccardo Rizzo ; Alfonso UrsoProbabilistic topic modeling for the analysis and classification of genomic sequences.
001506 (2015) Qin Tang [République populaire de Chine] ; Yulong Song [République populaire de Chine] ; Mijuan Shi [République populaire de Chine] ; Yingyin Cheng [République populaire de Chine] ; Wanting Zhang [République populaire de Chine] ; Xiao-Qin Xia [République populaire de Chine]Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition.
001659 (2015) Antonino Fiannaca [Italie] ; Massimo La Rosa [Italie] ; Riccardo Rizzo [Italie] ; Alfonso Urso [Italie]A k-mer-based barcode DNA classification methodology based on spectral representation and a neural gas network.
001783 (2014) Xiao Zhu [République populaire de Chine] ; Henry C M. Leung [Hong Kong] ; Francis Y L. Chin [Hong Kong] ; Siu Ming Yiu [Hong Kong] ; Guangri Quan [République populaire de Chine] ; Bo Liu [République populaire de Chine] ; Yadong Wang [République populaire de Chine]PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
001799 (2014) Xiaolei Wang ; Hiroyuki Kuwahara ; Xin GaoModeling DNA affinity landscape through two-round support vector regression with weighted degree kernels.
001920 (2014) Mahmoud Ghandi [États-Unis] ; Dongwon Lee [États-Unis] ; Morteza Mohammad-Noori [Iran] ; Michael A. Beer [États-Unis]Enhanced regulatory sequence prediction using gapped k-mer features.
001C48 (2012) Yu-Fang Qin [République populaire de Chine] ; Chun-Hua Wang ; Xiao-Qing Yu ; Jie Zhu ; Tai-Gang Liu ; Xiao-Qi ZhengPredicting protein structural class by incorporating patterns of over-represented k-mers into the general form of Chou's PseAAC.
001D01 (2012) Jianzhao Gao [République populaire de Chine] ; Eshel Faraggi ; Yaoqi Zhou ; Jishou Ruan ; Lukasz KurganBEST: improved prediction of B-cell epitopes from antigen sequences.
002974 (????) Maya John [Inde] ; Hadil Shaiba [Arabie saoudite]Main factors influencing recovery in MERS Co-V patients using machine learning.

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/Mesh.i -k "Support Vector Machine" 
HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/Mesh.i  \
                -Sk "Support Vector Machine" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Mesh.i
   |clé=    Support Vector Machine
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021