Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.

Identifieur interne : 002816 ( PubMed/Checkpoint ); précédent : 002815; suivant : 002817

Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.

Auteurs : J A Wagner [États-Unis] ; T V Mcdonald ; P T Nghiem ; A W Lowe ; H. Schulman ; D C Gruenert ; L. Stryer ; P. Gardner

Source :

RBID : pubmed:1379720

Descripteurs français

English descriptors

Abstract

Phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cAMP-dependent protein kinase leads to chloride flux in epithelial cells. Is CFTR also required for the calcium-dependent activation of chloride channels? We used antisense oligodeoxynucleotides to CFTR to reduce the expression of CFTR in colonic and tracheal epithelial cells. The antisense oligomers were a pair of adjacent 18-mers complementary to nucleotides 1-18 and 19-36 of CFTR mRNA. Sense and misantisense oligomers served as controls. A 48-h antisense treatment reduced the expression of CFTR protein as assayed by immunoprecipitation and autoradiography to 26% of the level in sense-treated T84 cells. Whole-cell patch clamp revealed that a 48-h antisense treatment of T84 and 56FHTE-8o- fetal tracheal epithelial cells reduced the cAMP-activated chloride current to approximately 10% of that in sense-treated cells. The half-life of functional CFTR is less than 24 h in these cells. In contrast, the calcium-activated chloride current was not affected by antisense treatment. Hence, the cAMP and calcium pathways are separate. CFTR is required for the cAMP pathway but not for the calcium pathway.

DOI: 10.1073/pnas.89.15.6785
PubMed: 1379720


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:1379720

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.</title>
<author>
<name sortKey="Wagner, J A" sort="Wagner, J A" uniqKey="Wagner J" first="J A" last="Wagner">J A Wagner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mcdonald, T V" sort="Mcdonald, T V" uniqKey="Mcdonald T" first="T V" last="Mcdonald">T V Mcdonald</name>
</author>
<author>
<name sortKey="Nghiem, P T" sort="Nghiem, P T" uniqKey="Nghiem P" first="P T" last="Nghiem">P T Nghiem</name>
</author>
<author>
<name sortKey="Lowe, A W" sort="Lowe, A W" uniqKey="Lowe A" first="A W" last="Lowe">A W Lowe</name>
</author>
<author>
<name sortKey="Schulman, H" sort="Schulman, H" uniqKey="Schulman H" first="H" last="Schulman">H. Schulman</name>
</author>
<author>
<name sortKey="Gruenert, D C" sort="Gruenert, D C" uniqKey="Gruenert D" first="D C" last="Gruenert">D C Gruenert</name>
</author>
<author>
<name sortKey="Stryer, L" sort="Stryer, L" uniqKey="Stryer L" first="L" last="Stryer">L. Stryer</name>
</author>
<author>
<name sortKey="Gardner, P" sort="Gardner, P" uniqKey="Gardner P" first="P" last="Gardner">P. Gardner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1992">1992</date>
<idno type="RBID">pubmed:1379720</idno>
<idno type="pmid">1379720</idno>
<idno type="doi">10.1073/pnas.89.15.6785</idno>
<idno type="wicri:Area/PubMed/Corpus">002953</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002953</idno>
<idno type="wicri:Area/PubMed/Curation">002953</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002953</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002816</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002816</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.</title>
<author>
<name sortKey="Wagner, J A" sort="Wagner, J A" uniqKey="Wagner J" first="J A" last="Wagner">J A Wagner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, CA 94305.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mcdonald, T V" sort="Mcdonald, T V" uniqKey="Mcdonald T" first="T V" last="Mcdonald">T V Mcdonald</name>
</author>
<author>
<name sortKey="Nghiem, P T" sort="Nghiem, P T" uniqKey="Nghiem P" first="P T" last="Nghiem">P T Nghiem</name>
</author>
<author>
<name sortKey="Lowe, A W" sort="Lowe, A W" uniqKey="Lowe A" first="A W" last="Lowe">A W Lowe</name>
</author>
<author>
<name sortKey="Schulman, H" sort="Schulman, H" uniqKey="Schulman H" first="H" last="Schulman">H. Schulman</name>
</author>
<author>
<name sortKey="Gruenert, D C" sort="Gruenert, D C" uniqKey="Gruenert D" first="D C" last="Gruenert">D C Gruenert</name>
</author>
<author>
<name sortKey="Stryer, L" sort="Stryer, L" uniqKey="Stryer L" first="L" last="Stryer">L. Stryer</name>
</author>
<author>
<name sortKey="Gardner, P" sort="Gardner, P" uniqKey="Gardner P" first="P" last="Gardner">P. Gardner</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1992" type="published">1992</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Calcium (pharmacology)</term>
<term>Cell Line</term>
<term>Chloride Channels</term>
<term>Cyclic AMP (analogs & derivatives)</term>
<term>Cyclic AMP (metabolism)</term>
<term>Cyclic AMP (pharmacology)</term>
<term>Cystic Fibrosis (genetics)</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator</term>
<term>Humans</term>
<term>Ion Channels (drug effects)</term>
<term>Ionomycin (pharmacology)</term>
<term>Membrane Proteins (drug effects)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (physiology)</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotides, Antisense (pharmacology)</term>
<term>Phosphorylation</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Thionucleotides (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP cyclique (analogues et dérivés)</term>
<term>AMP cyclique (métabolisme)</term>
<term>AMP cyclique (pharmacologie)</term>
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Calcium (pharmacologie)</term>
<term>Canaux chlorure</term>
<term>Canaux ioniques ()</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Ionomycine (pharmacologie)</term>
<term>Lignée cellulaire</term>
<term>Modèles biologiques</term>
<term>Mucoviscidose (génétique)</term>
<term>Oligonucléotides antisens (pharmacologie)</term>
<term>Phosphorylation</term>
<term>Protéine CFTR</term>
<term>Protéines membranaires ()</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (physiologie)</term>
<term>Séquence nucléotidique</term>
<term>Thionucléotides (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cyclic AMP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Ion Channels</term>
<term>Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Calcium</term>
<term>Cyclic AMP</term>
<term>Ionomycin</term>
<term>Oligonucleotides, Antisense</term>
<term>Thionucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>AMP cyclique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cystic Fibrosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Mucoviscidose</term>
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>AMP cyclique</term>
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>AMP cyclique</term>
<term>Calcium</term>
<term>Ionomycine</term>
<term>Oligonucléotides antisens</term>
<term>Thionucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Line</term>
<term>Chloride Channels</term>
<term>Cystic Fibrosis Transmembrane Conductance Regulator</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Canaux chlorure</term>
<term>Canaux ioniques</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Modèles biologiques</term>
<term>Phosphorylation</term>
<term>Protéine CFTR</term>
<term>Protéines membranaires</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cAMP-dependent protein kinase leads to chloride flux in epithelial cells. Is CFTR also required for the calcium-dependent activation of chloride channels? We used antisense oligodeoxynucleotides to CFTR to reduce the expression of CFTR in colonic and tracheal epithelial cells. The antisense oligomers were a pair of adjacent 18-mers complementary to nucleotides 1-18 and 19-36 of CFTR mRNA. Sense and misantisense oligomers served as controls. A 48-h antisense treatment reduced the expression of CFTR protein as assayed by immunoprecipitation and autoradiography to 26% of the level in sense-treated T84 cells. Whole-cell patch clamp revealed that a 48-h antisense treatment of T84 and 56FHTE-8o- fetal tracheal epithelial cells reduced the cAMP-activated chloride current to approximately 10% of that in sense-treated cells. The half-life of functional CFTR is less than 24 h in these cells. In contrast, the calcium-activated chloride current was not affected by antisense treatment. Hence, the cAMP and calcium pathways are separate. CFTR is required for the cAMP pathway but not for the calcium pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1379720</PMID>
<DateCompleted>
<Year>1992</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>89</Volume>
<Issue>15</Issue>
<PubDate>
<Year>1992</Year>
<Month>Aug</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.</ArticleTitle>
<Pagination>
<MedlinePgn>6785-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cAMP-dependent protein kinase leads to chloride flux in epithelial cells. Is CFTR also required for the calcium-dependent activation of chloride channels? We used antisense oligodeoxynucleotides to CFTR to reduce the expression of CFTR in colonic and tracheal epithelial cells. The antisense oligomers were a pair of adjacent 18-mers complementary to nucleotides 1-18 and 19-36 of CFTR mRNA. Sense and misantisense oligomers served as controls. A 48-h antisense treatment reduced the expression of CFTR protein as assayed by immunoprecipitation and autoradiography to 26% of the level in sense-treated T84 cells. Whole-cell patch clamp revealed that a 48-h antisense treatment of T84 and 56FHTE-8o- fetal tracheal epithelial cells reduced the cAMP-activated chloride current to approximately 10% of that in sense-treated cells. The half-life of functional CFTR is less than 24 h in these cells. In contrast, the calcium-activated chloride current was not affected by antisense treatment. Hence, the cAMP and calcium pathways are separate. CFTR is required for the cAMP pathway but not for the calcium pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Falk Cardiovascular Research Center, Stanford University School of Medicine, CA 94305.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McDonald</LastName>
<ForeName>T V</ForeName>
<Initials>TV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nghiem</LastName>
<ForeName>P T</ForeName>
<Initials>PT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lowe</LastName>
<ForeName>A W</ForeName>
<Initials>AW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schulman</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gruenert</LastName>
<ForeName>D C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stryer</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gardner</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C505032">CFTR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018118">Chloride Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016376">Oligonucleotides, Antisense</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013873">Thionucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>126880-72-6</RegistryNumber>
<NameOfSubstance UI="D019005">Cystic Fibrosis Transmembrane Conductance Regulator</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>41941-66-6</RegistryNumber>
<NameOfSubstance UI="C015929">8-((4-chlorophenyl)thio)cyclic-3',5'-AMP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>56092-81-0</RegistryNumber>
<NameOfSubstance UI="D015759">Ionomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E0399OZS9N</RegistryNumber>
<NameOfSubstance UI="D000242">Cyclic AMP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018118" MajorTopicYN="N">Chloride Channels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000242" MajorTopicYN="N">Cyclic AMP</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003550" MajorTopicYN="N">Cystic Fibrosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019005" MajorTopicYN="N">Cystic Fibrosis Transmembrane Conductance Regulator</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015759" MajorTopicYN="N">Ionomycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016376" MajorTopicYN="N">Oligonucleotides, Antisense</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013873" MajorTopicYN="N">Thionucleotides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1992</Year>
<Month>8</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1992</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1992</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1379720</ArticleId>
<ArticleId IdType="pmc">PMC49588</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.89.15.6785</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1991 Feb 8;251(4994):679-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1704151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1984 Jun;73(6):1763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6327771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Feb 28;349(6312):793-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1991 Apr;260(4 Pt 1):C877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1708204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1712478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jul 12;253(5016):205-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1712985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7759-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Sep 6;66(5):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1716180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 15;67(4):775-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1718606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Dec 19-26;354(6354):526-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1722027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Dec 20;254(5039):1797-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1722350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1991 Aug 22;325(8):533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1857389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1991;629:227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1952551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Jul;87(13):4956-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Feb 21;68(4):809-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1539-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1621-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1991 Aug;261(2 Pt 1):L63-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1651669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1990 Jun;4(6):919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1694446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Sep 21;62(6):1227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1698126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Sep 27;347(6291):358-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1699126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Sep 27;347(6291):382-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1699127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Nov 16;63(4):827-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1699669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Oct 25;265(30):18055-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2211681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1985;87(3):177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2416932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1989 Feb;256(2 Pt 1):C226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2465689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Sep 8;245(4922):1066-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2475911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 1989 Sep;10(9):360-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2557690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Sep 8;245(4922):1059-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2772657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Aug 1;172(2):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3056098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1987 Oct;67(4):1143-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3317457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 1981 Aug;391(2):85-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6270629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Feb 22;64(4):681-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705179</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gardner, P" sort="Gardner, P" uniqKey="Gardner P" first="P" last="Gardner">P. Gardner</name>
<name sortKey="Gruenert, D C" sort="Gruenert, D C" uniqKey="Gruenert D" first="D C" last="Gruenert">D C Gruenert</name>
<name sortKey="Lowe, A W" sort="Lowe, A W" uniqKey="Lowe A" first="A W" last="Lowe">A W Lowe</name>
<name sortKey="Mcdonald, T V" sort="Mcdonald, T V" uniqKey="Mcdonald T" first="T V" last="Mcdonald">T V Mcdonald</name>
<name sortKey="Nghiem, P T" sort="Nghiem, P T" uniqKey="Nghiem P" first="P T" last="Nghiem">P T Nghiem</name>
<name sortKey="Schulman, H" sort="Schulman, H" uniqKey="Schulman H" first="H" last="Schulman">H. Schulman</name>
<name sortKey="Stryer, L" sort="Stryer, L" uniqKey="Stryer L" first="L" last="Stryer">L. Stryer</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Wagner, J A" sort="Wagner, J A" uniqKey="Wagner J" first="J A" last="Wagner">J A Wagner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002816 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002816 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:1379720
   |texte=   Antisense oligodeoxynucleotides to the cystic fibrosis transmembrane conductance regulator inhibit cAMP-activated but not calcium-activated chloride currents.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:1379720" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021