Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.

Identifieur interne : 002770 ( PubMed/Checkpoint ); précédent : 002769; suivant : 002771

Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.

Auteurs : Z. Gu ; E J Rogers ; P S Lovett

Source :

RBID : pubmed:7690023

Descripteurs français

English descriptors

Abstract

The site of ribosome stalling in the leader of cat transcripts is critical to induction of downstream translation. Site-specific stalling requires translation of the first five leader codons and the presence of chloramphenicol, a sequence-independent inhibitor of ribosome elongation. We demonstrate in this report that a synthetic peptide (the 5-mer) corresponding to the N-terminal five codons of the cat-86 leader inhibits peptidyl transferase in vitro. The N-terminal 2-, 3-, and 4-mers and the reverse 5-mer (reverse amino acid sequence of the 5-mer) are virtually without effect on peptidyl transferase. A missense mutation in the cat-86 leader that abolishes induction in vivo corresponds to an amino acid replacement in the 5-mer that completely relieves peptidyl transferase inhibition. In contrast, a missense mutation that does not interfere with in vivo induction corresponds to an amino acid replacement in the 5-mer that does not significantly alter peptidyl transferase inhibition. Our results suggest that peptidyl transferase inhibition by the nascent cat-86 5-mer peptide may be the primary determinant of the site of ribosome stalling in the leader. A model based on this concept can explain the site specificity of ribosome stalling as well as the response of induction to very low levels of the antibiotic inducer.

DOI: 10.1128/jb.175.17.5309-5313.1993
PubMed: 7690023


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:7690023

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.</title>
<author>
<name sortKey="Gu, Z" sort="Gu, Z" uniqKey="Gu Z" first="Z" last="Gu">Z. Gu</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.</nlm:affiliation>
<wicri:noCountry code="subField">Catonsville 21228</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rogers, E J" sort="Rogers, E J" uniqKey="Rogers E" first="E J" last="Rogers">E J Rogers</name>
</author>
<author>
<name sortKey="Lovett, P S" sort="Lovett, P S" uniqKey="Lovett P" first="P S" last="Lovett">P S Lovett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:7690023</idno>
<idno type="pmid">7690023</idno>
<idno type="doi">10.1128/jb.175.17.5309-5313.1993</idno>
<idno type="wicri:Area/PubMed/Corpus">002912</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002912</idno>
<idno type="wicri:Area/PubMed/Curation">002912</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002912</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002770</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002770</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.</title>
<author>
<name sortKey="Gu, Z" sort="Gu, Z" uniqKey="Gu Z" first="Z" last="Gu">Z. Gu</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.</nlm:affiliation>
<wicri:noCountry code="subField">Catonsville 21228</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rogers, E J" sort="Rogers, E J" uniqKey="Rogers E" first="E J" last="Rogers">E J Rogers</name>
</author>
<author>
<name sortKey="Lovett, P S" sort="Lovett, P S" uniqKey="Lovett P" first="P S" last="Lovett">P S Lovett</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="ISSN">0021-9193</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Bacillus subtilis (enzymology)</term>
<term>Bacillus subtilis (genetics)</term>
<term>Base Sequence</term>
<term>Chloramphenicol (pharmacology)</term>
<term>Chloramphenicol O-Acetyltransferase (genetics)</term>
<term>Chloramphenicol O-Acetyltransferase (metabolism)</term>
<term>Drug Resistance, Microbial (genetics)</term>
<term>Enzyme Induction</term>
<term>Erythromycin (pharmacology)</term>
<term>Kinetics</term>
<term>Lincomycin (pharmacology)</term>
<term>Molecular Sequence Data</term>
<term>Peptidyl Transferases (antagonists & inhibitors)</term>
<term>Peptidyl Transferases (drug effects)</term>
<term>Protein Sorting Signals (genetics)</term>
<term>Protein Sorting Signals (metabolism)</term>
<term>RNA, Bacterial</term>
<term>Ribosomes (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien</term>
<term>Bacillus subtilis (enzymologie)</term>
<term>Bacillus subtilis (génétique)</term>
<term>Chloramphenicol O-acetyltransferase (génétique)</term>
<term>Chloramphenicol O-acetyltransferase (métabolisme)</term>
<term>Chloramphénicol (pharmacologie)</term>
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Induction enzymatique</term>
<term>Lincomycine (pharmacologie)</term>
<term>Peptidyl transferases ()</term>
<term>Peptidyl transferases (antagonistes et inhibiteurs)</term>
<term>Ribosomes (métabolisme)</term>
<term>Résistance microbienne aux médicaments (génétique)</term>
<term>Signaux de triage des protéines (génétique)</term>
<term>Signaux de triage des protéines (métabolisme)</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Érythromycine (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Peptidyl Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Peptidyl Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chloramphenicol O-Acetyltransferase</term>
<term>Protein Sorting Signals</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloramphenicol O-Acetyltransferase</term>
<term>Protein Sorting Signals</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloramphenicol</term>
<term>Erythromycin</term>
<term>Lincomycin</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Peptidyl transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Drug Resistance, Microbial</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Chloramphenicol O-acetyltransferase</term>
<term>Résistance microbienne aux médicaments</term>
<term>Signaux de triage des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloramphenicol O-acetyltransferase</term>
<term>Ribosomes</term>
<term>Signaux de triage des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chloramphénicol</term>
<term>Lincomycine</term>
<term>Érythromycine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Enzyme Induction</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>RNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN bactérien</term>
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Induction enzymatique</term>
<term>Peptidyl transferases</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The site of ribosome stalling in the leader of cat transcripts is critical to induction of downstream translation. Site-specific stalling requires translation of the first five leader codons and the presence of chloramphenicol, a sequence-independent inhibitor of ribosome elongation. We demonstrate in this report that a synthetic peptide (the 5-mer) corresponding to the N-terminal five codons of the cat-86 leader inhibits peptidyl transferase in vitro. The N-terminal 2-, 3-, and 4-mers and the reverse 5-mer (reverse amino acid sequence of the 5-mer) are virtually without effect on peptidyl transferase. A missense mutation in the cat-86 leader that abolishes induction in vivo corresponds to an amino acid replacement in the 5-mer that completely relieves peptidyl transferase inhibition. In contrast, a missense mutation that does not interfere with in vivo induction corresponds to an amino acid replacement in the 5-mer that does not significantly alter peptidyl transferase inhibition. Our results suggest that peptidyl transferase inhibition by the nascent cat-86 5-mer peptide may be the primary determinant of the site of ribosome stalling in the leader. A model based on this concept can explain the site specificity of ribosome stalling as well as the response of induction to very low levels of the antibiotic inducer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7690023</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>10</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9193</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>175</Volume>
<Issue>17</Issue>
<PubDate>
<Year>1993</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J. Bacteriol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.</ArticleTitle>
<Pagination>
<MedlinePgn>5309-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The site of ribosome stalling in the leader of cat transcripts is critical to induction of downstream translation. Site-specific stalling requires translation of the first five leader codons and the presence of chloramphenicol, a sequence-independent inhibitor of ribosome elongation. We demonstrate in this report that a synthetic peptide (the 5-mer) corresponding to the N-terminal five codons of the cat-86 leader inhibits peptidyl transferase in vitro. The N-terminal 2-, 3-, and 4-mers and the reverse 5-mer (reverse amino acid sequence of the 5-mer) are virtually without effect on peptidyl transferase. A missense mutation in the cat-86 leader that abolishes induction in vivo corresponds to an amino acid replacement in the 5-mer that completely relieves peptidyl transferase inhibition. In contrast, a missense mutation that does not interfere with in vivo induction corresponds to an amino acid replacement in the 5-mer that does not significantly alter peptidyl transferase inhibition. Our results suggest that peptidyl transferase inhibition by the nascent cat-86 5-mer peptide may be the primary determinant of the site of ribosome stalling in the leader. A model based on this concept can explain the site specificity of ribosome stalling as well as the response of induction to very low levels of the antibiotic inducer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Z</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rogers</LastName>
<ForeName>E J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lovett</LastName>
<ForeName>P S</ForeName>
<Initials>PS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM-42925</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63937KV33D</RegistryNumber>
<NameOfSubstance UI="D004917">Erythromycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66974FR9Q1</RegistryNumber>
<NameOfSubstance UI="D002701">Chloramphenicol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BOD072YW0F</RegistryNumber>
<NameOfSubstance UI="D008034">Lincomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.28</RegistryNumber>
<NameOfSubstance UI="D015500">Chloramphenicol O-Acetyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.12</RegistryNumber>
<NameOfSubstance UI="D010458">Peptidyl Transferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<GeneSymbolList>
<GeneSymbol>cat</GeneSymbol>
</GeneSymbolList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002701" MajorTopicYN="N">Chloramphenicol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015500" MajorTopicYN="N">Chloramphenicol O-Acetyltransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004352" MajorTopicYN="N">Drug Resistance, Microbial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004790" MajorTopicYN="N">Enzyme Induction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004917" MajorTopicYN="N">Erythromycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008034" MajorTopicYN="N">Lincomycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010458" MajorTopicYN="N">Peptidyl Transferases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>9</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7690023</ArticleId>
<ArticleId IdType="pmc">PMC206583</ArticleId>
<ArticleId IdType="doi">10.1128/jb.175.17.5309-5313.1993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1965 Nov;14(1):63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5327658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Jun;8(6):1063-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7689687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1967 Aug 28;28(1):161-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6051749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1982 May;150(2):815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6950931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1982;16:113-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6186194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1983 Oct;24(2-3):171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6416927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1984 Jun;158(3):784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6327638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CRC Crit Rev Biochem. 1984;16(2):103-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6203682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1985 Jan 1;179(1):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3855295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Feb;4(2):533-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4018035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1985 Sep;4(9):2295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3865770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Sep;167(3):842-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3462183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 Sep;169(9):4235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3114238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 May;85(9):3057-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3129723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1988 Sep;214(1):108-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2465483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Mar 5;206(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2467989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(15):5763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Jan;172(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2403536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Jan;172(1):110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2294082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Jul 13;62(1):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2163764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Nov;172(11):6282-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2121710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jun 5;256(5062):1416-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1604315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1992 Oct;6(19):2769-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1279359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1967 Apr 28;25(2):347-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6034103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Gu, Z" sort="Gu, Z" uniqKey="Gu Z" first="Z" last="Gu">Z. Gu</name>
<name sortKey="Lovett, P S" sort="Lovett, P S" uniqKey="Lovett P" first="P S" last="Lovett">P S Lovett</name>
<name sortKey="Rogers, E J" sort="Rogers, E J" uniqKey="Rogers E" first="E J" last="Rogers">E J Rogers</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002770 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002770 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:7690023
   |texte=   Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:7690023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021