Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.

Identifieur interne : 002489 ( PubMed/Checkpoint ); précédent : 002488; suivant : 002490

Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.

Auteurs : S. André [Allemagne] ; P J Ortega ; M A Perez ; R. Roy ; H J Gabius

Source :

RBID : pubmed:10536041

Descripteurs français

English descriptors

Abstract

Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential of dendrimers for applications as lectin-targeting device, as attested by these observations.

DOI: 10.1093/glycob/9.11.1253
PubMed: 10536041


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:10536041

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.</title>
<author>
<name sortKey="Andre, S" sort="Andre, S" uniqKey="Andre S" first="S" last="André">S. André</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, D-80539 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, D-80539 Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ortega, P J" sort="Ortega, P J" uniqKey="Ortega P" first="P J" last="Ortega">P J Ortega</name>
</author>
<author>
<name sortKey="Perez, M A" sort="Perez, M A" uniqKey="Perez M" first="M A" last="Perez">M A Perez</name>
</author>
<author>
<name sortKey="Roy, R" sort="Roy, R" uniqKey="Roy R" first="R" last="Roy">R. Roy</name>
</author>
<author>
<name sortKey="Gabius, H J" sort="Gabius, H J" uniqKey="Gabius H" first="H J" last="Gabius">H J Gabius</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10536041</idno>
<idno type="pmid">10536041</idno>
<idno type="doi">10.1093/glycob/9.11.1253</idno>
<idno type="wicri:Area/PubMed/Corpus">002616</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002616</idno>
<idno type="wicri:Area/PubMed/Curation">002616</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002616</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002489</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002489</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.</title>
<author>
<name sortKey="Andre, S" sort="Andre, S" uniqKey="Andre S" first="S" last="André">S. André</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, D-80539 Munich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, D-80539 Munich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ortega, P J" sort="Ortega, P J" uniqKey="Ortega P" first="P J" last="Ortega">P J Ortega</name>
</author>
<author>
<name sortKey="Perez, M A" sort="Perez, M A" uniqKey="Perez M" first="M A" last="Perez">M A Perez</name>
</author>
<author>
<name sortKey="Roy, R" sort="Roy, R" uniqKey="Roy R" first="R" last="Roy">R. Roy</name>
</author>
<author>
<name sortKey="Gabius, H J" sort="Gabius, H J" uniqKey="Gabius H" first="H J" last="Gabius">H J Gabius</name>
</author>
</analytic>
<series>
<title level="j">Glycobiology</title>
<idno type="ISSN">0959-6658</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antigens, Differentiation (metabolism)</term>
<term>Binding Sites</term>
<term>Carbohydrate Conformation</term>
<term>Carbohydrate Sequence</term>
<term>Cattle</term>
<term>Galectin 3</term>
<term>Glycoconjugates (chemistry)</term>
<term>Glycoconjugates (metabolism)</term>
<term>Glycoconjugates (pharmacology)</term>
<term>Glycosides (metabolism)</term>
<term>Humans</term>
<term>Immunoglobulin G (metabolism)</term>
<term>Lactose (chemistry)</term>
<term>Lectins (metabolism)</term>
<term>Ligands</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Plant Preparations</term>
<term>Plant Proteins</term>
<term>Protein Binding</term>
<term>Receptors, Cell Surface (metabolism)</term>
<term>Ribosome Inactivating Proteins, Type 2</term>
<term>Thermodynamics</term>
<term>Toxins, Biological (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Antigènes de différenciation (métabolisme)</term>
<term>Bovins</term>
<term>Conformation des glucides</term>
<term>Données de séquences moléculaires</term>
<term>Galectine -3</term>
<term>Glycoconjugués ()</term>
<term>Glycoconjugués (métabolisme)</term>
<term>Glycoconjugués (pharmacologie)</term>
<term>Humains</term>
<term>Hétérosides (métabolisme)</term>
<term>Immunoglobuline G (métabolisme)</term>
<term>Lactose ()</term>
<term>Lectines (métabolisme)</term>
<term>Liaison aux protéines</term>
<term>Ligands</term>
<term>Protéines inactivant les ribosomes de type 2</term>
<term>Protéines végétales</term>
<term>Préparations à base de plantes</term>
<term>Récepteurs de surface cellulaire (métabolisme)</term>
<term>Sites de fixation</term>
<term>Souris</term>
<term>Séquence glucidique</term>
<term>Thermodynamique</term>
<term>Toxines biologiques (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glycoconjugates</term>
<term>Lactose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antigens, Differentiation</term>
<term>Glycoconjugates</term>
<term>Glycosides</term>
<term>Immunoglobulin G</term>
<term>Lectins</term>
<term>Receptors, Cell Surface</term>
<term>Toxins, Biological</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glycoconjugates</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigènes de différenciation</term>
<term>Glycoconjugués</term>
<term>Hétérosides</term>
<term>Immunoglobuline G</term>
<term>Lectines</term>
<term>Récepteurs de surface cellulaire</term>
<term>Toxines biologiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glycoconjugués</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Carbohydrate Conformation</term>
<term>Carbohydrate Sequence</term>
<term>Cattle</term>
<term>Galectin 3</term>
<term>Humans</term>
<term>Ligands</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Plant Preparations</term>
<term>Plant Proteins</term>
<term>Protein Binding</term>
<term>Ribosome Inactivating Proteins, Type 2</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Conformation des glucides</term>
<term>Données de séquences moléculaires</term>
<term>Galectine -3</term>
<term>Glycoconjugués</term>
<term>Humains</term>
<term>Lactose</term>
<term>Liaison aux protéines</term>
<term>Ligands</term>
<term>Protéines inactivant les ribosomes de type 2</term>
<term>Protéines végétales</term>
<term>Préparations à base de plantes</term>
<term>Sites de fixation</term>
<term>Souris</term>
<term>Séquence glucidique</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential of dendrimers for applications as lectin-targeting device, as attested by these observations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10536041</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0959-6658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>1999</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Glycobiology</Title>
<ISOAbbreviation>Glycobiology</ISOAbbreviation>
</Journal>
<ArticleTitle>Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.</ArticleTitle>
<Pagination>
<MedlinePgn>1253-61</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential of dendrimers for applications as lectin-targeting device, as attested by these observations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>André</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, D-80539 Munich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ortega</LastName>
<ForeName>P J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perez</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gabius</LastName>
<ForeName>H J</ForeName>
<Initials>HJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glycobiology</MedlineTA>
<NlmUniqueID>9104124</NlmUniqueID>
<ISSNLinking>0959-6658</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000943">Antigens, Differentiation</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037502">Galectin 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006001">Glycoconjugates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007074">Immunoglobulin G</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037102">Lectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028321">Plant Preparations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011956">Receptors, Cell Surface</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054790">Ribosome Inactivating Proteins, Type 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014118">Toxins, Biological</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C009674">ribosome inactivating protein, Viscum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>17691-02-0</RegistryNumber>
<NameOfSubstance UI="C029976">4-aminophenyl beta-lactoside</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J2B2A4N98G</RegistryNumber>
<NameOfSubstance UI="D007785">Lactose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000943" MajorTopicYN="N">Antigens, Differentiation</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002236" MajorTopicYN="N">Carbohydrate Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002240" MajorTopicYN="N">Carbohydrate Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037502" MajorTopicYN="N">Galectin 3</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006001" MajorTopicYN="N">Glycoconjugates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007074" MajorTopicYN="N">Immunoglobulin G</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007785" MajorTopicYN="N">Lactose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037102" MajorTopicYN="N">Lectins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028321" MajorTopicYN="Y">Plant Preparations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="Y">Plant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011956" MajorTopicYN="N">Receptors, Cell Surface</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054790" MajorTopicYN="N">Ribosome Inactivating Proteins, Type 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014118" MajorTopicYN="N">Toxins, Biological</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10536041</ArticleId>
<ArticleId IdType="pii">cwc112</ArticleId>
<ArticleId IdType="doi">10.1093/glycob/9.11.1253</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université Louis-et-Maximilien de Munich</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gabius, H J" sort="Gabius, H J" uniqKey="Gabius H" first="H J" last="Gabius">H J Gabius</name>
<name sortKey="Ortega, P J" sort="Ortega, P J" uniqKey="Ortega P" first="P J" last="Ortega">P J Ortega</name>
<name sortKey="Perez, M A" sort="Perez, M A" uniqKey="Perez M" first="M A" last="Perez">M A Perez</name>
<name sortKey="Roy, R" sort="Roy, R" uniqKey="Roy R" first="R" last="Roy">R. Roy</name>
</noCountry>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Andre, S" sort="Andre, S" uniqKey="Andre S" first="S" last="André">S. André</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002489 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002489 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:10536041
   |texte=   Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:10536041" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021