Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers.

Identifieur interne : 002315 ( PubMed/Checkpoint ); précédent : 002314; suivant : 002316

Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers.

Auteurs : Haimei Chen [Royaume-Uni] ; John A. Parkinson ; Olga Nováková ; Juraj Bella ; Fuyi Wang ; Alice Dawson ; Robert Gould ; Simon Parsons ; Viktor Brabec ; Peter J. Sadler

Source :

RBID : pubmed:14657383

Descripteurs français

English descriptors

Abstract

Organometallic chemistry offers novel concepts in structural diversity and molecular recognition that can be used in drug design. Here, we consider DNA recognition by eta 6-arene Ru(II) anticancer complexes by an induced-fit mechanism. The stereochemistry of the dinuclear complex [((eta 6-biphenyl)RuCl(en))2-(CH2)6]2 + (3, en = ethylenediamine) was elucidated by studies of the half unit [(eta 6-biphenyl)RuCl(Et-en)]+ (2, where Et-en is Et(H)NCH2CH2NH2). The structures of the separated RRu*RN* and SRu*RN* diastereomers of 2 were determined by x-ray crystallography; their slow interconversion in water (t(1/2) approximately 2 h, 298 K, pH 6.2) was observed by NMR spectroscopy. For 2 and 3 the RRu*RN* configurations are more stable than SRu*RN* (73:27). X-ray and NMR studies showed that reactions of 2 and 3 with 9-ethylguanine gave rise selectively to SRu*RN* diastereomers. Dynamic chiral recognition of guanine can lead to high diastereoselectivity of DNA binding. The dinuclear complex 3 induced a large unwinding (31 degrees) of plasmid DNA, twice that of mononuclear 2 (14 degrees), and effectively inhibited DNA-directed RNA synthesis in vitro. This dinuclear complex gave rise to interstrand cross-links on a 213-bp plasmid fragment with efficiency similar to bifunctional cisplatin, and to 1,3-GG interstrand and 1,2-GG and 1,3-GTG intrastrand cross-links on site-specifically ruthenated 20-mers. Complex 3 blocked intercalation of ethidium considerably more than mononuclear 2. The concept of induced-fit recognition of DNA by organometallic complexes containing dynamic stereogenic centers via dynamic epimerization, intercalation, and cross-linking may be useful in the design of anticancer drugs.

DOI: 10.1073/pnas.2434016100
PubMed: 14657383


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:14657383

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers.</title>
<author>
<name sortKey="Chen, Haimei" sort="Chen, Haimei" uniqKey="Chen H" first="Haimei" last="Chen">Haimei Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ</wicri:regionArea>
<orgName type="university">Université d'Édimbourg</orgName>
<placeName>
<settlement type="city">Édimbourg</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, John A" sort="Parkinson, John A" uniqKey="Parkinson J" first="John A" last="Parkinson">John A. Parkinson</name>
</author>
<author>
<name sortKey="Novakova, Olga" sort="Novakova, Olga" uniqKey="Novakova O" first="Olga" last="Nováková">Olga Nováková</name>
</author>
<author>
<name sortKey="Bella, Juraj" sort="Bella, Juraj" uniqKey="Bella J" first="Juraj" last="Bella">Juraj Bella</name>
</author>
<author>
<name sortKey="Wang, Fuyi" sort="Wang, Fuyi" uniqKey="Wang F" first="Fuyi" last="Wang">Fuyi Wang</name>
</author>
<author>
<name sortKey="Dawson, Alice" sort="Dawson, Alice" uniqKey="Dawson A" first="Alice" last="Dawson">Alice Dawson</name>
</author>
<author>
<name sortKey="Gould, Robert" sort="Gould, Robert" uniqKey="Gould R" first="Robert" last="Gould">Robert Gould</name>
</author>
<author>
<name sortKey="Parsons, Simon" sort="Parsons, Simon" uniqKey="Parsons S" first="Simon" last="Parsons">Simon Parsons</name>
</author>
<author>
<name sortKey="Brabec, Viktor" sort="Brabec, Viktor" uniqKey="Brabec V" first="Viktor" last="Brabec">Viktor Brabec</name>
</author>
<author>
<name sortKey="Sadler, Peter J" sort="Sadler, Peter J" uniqKey="Sadler P" first="Peter J" last="Sadler">Peter J. Sadler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14657383</idno>
<idno type="pmid">14657383</idno>
<idno type="doi">10.1073/pnas.2434016100</idno>
<idno type="wicri:Area/PubMed/Corpus">002422</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002422</idno>
<idno type="wicri:Area/PubMed/Curation">002422</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002422</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002315</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002315</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers.</title>
<author>
<name sortKey="Chen, Haimei" sort="Chen, Haimei" uniqKey="Chen H" first="Haimei" last="Chen">Haimei Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ</wicri:regionArea>
<orgName type="university">Université d'Édimbourg</orgName>
<placeName>
<settlement type="city">Édimbourg</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Parkinson, John A" sort="Parkinson, John A" uniqKey="Parkinson J" first="John A" last="Parkinson">John A. Parkinson</name>
</author>
<author>
<name sortKey="Novakova, Olga" sort="Novakova, Olga" uniqKey="Novakova O" first="Olga" last="Nováková">Olga Nováková</name>
</author>
<author>
<name sortKey="Bella, Juraj" sort="Bella, Juraj" uniqKey="Bella J" first="Juraj" last="Bella">Juraj Bella</name>
</author>
<author>
<name sortKey="Wang, Fuyi" sort="Wang, Fuyi" uniqKey="Wang F" first="Fuyi" last="Wang">Fuyi Wang</name>
</author>
<author>
<name sortKey="Dawson, Alice" sort="Dawson, Alice" uniqKey="Dawson A" first="Alice" last="Dawson">Alice Dawson</name>
</author>
<author>
<name sortKey="Gould, Robert" sort="Gould, Robert" uniqKey="Gould R" first="Robert" last="Gould">Robert Gould</name>
</author>
<author>
<name sortKey="Parsons, Simon" sort="Parsons, Simon" uniqKey="Parsons S" first="Simon" last="Parsons">Simon Parsons</name>
</author>
<author>
<name sortKey="Brabec, Viktor" sort="Brabec, Viktor" uniqKey="Brabec V" first="Viktor" last="Brabec">Viktor Brabec</name>
</author>
<author>
<name sortKey="Sadler, Peter J" sort="Sadler, Peter J" uniqKey="Sadler P" first="Peter J" last="Sadler">Peter J. Sadler</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antineoplastic Agents (pharmacology)</term>
<term>Base Sequence</term>
<term>Circular Dichroism</term>
<term>Cisplatin (pharmacology)</term>
<term>Cross-Linking Reagents (pharmacology)</term>
<term>Crystallography, X-Ray</term>
<term>DNA (chemistry)</term>
<term>DNA, Superhelical (chemistry)</term>
<term>DNA-Directed RNA Polymerases (chemistry)</term>
<term>Ethidium (pharmacology)</term>
<term>Guanine (analogs & derivatives)</term>
<term>Guanine (chemistry)</term>
<term>Kinetics</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Plasmids (metabolism)</term>
<term>Stereoisomerism</term>
<term>Time Factors</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>ADN superhélicoïdal ()</term>
<term>Antinéoplasiques (pharmacologie)</term>
<term>Cinétique</term>
<term>Cisplatine (pharmacologie)</term>
<term>Conformation d'acide nucléique</term>
<term>Conformation moléculaire</term>
<term>Cristallographie aux rayons X</term>
<term>DNA-directed RNA polymerases ()</term>
<term>Dichroïsme circulaire</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs temps</term>
<term>Guanine ()</term>
<term>Guanine (analogues et dérivés)</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Plasmides (métabolisme)</term>
<term>Réactifs réticulants (pharmacologie)</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Stéréoisomérie</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
<term>Éthidium (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Guanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>DNA, Superhelical</term>
<term>DNA-Directed RNA Polymerases</term>
<term>Guanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cisplatin</term>
<term>Cross-Linking Reagents</term>
<term>Ethidium</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Guanine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antinéoplasiques</term>
<term>Cisplatine</term>
<term>Réactifs réticulants</term>
<term>Éthidium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Circular Dichroism</term>
<term>Crystallography, X-Ray</term>
<term>Kinetics</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Stereoisomerism</term>
<term>Time Factors</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>ADN superhélicoïdal</term>
<term>Cinétique</term>
<term>Conformation d'acide nucléique</term>
<term>Conformation moléculaire</term>
<term>Cristallographie aux rayons X</term>
<term>DNA-directed RNA polymerases</term>
<term>Dichroïsme circulaire</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs temps</term>
<term>Guanine</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Stéréoisomérie</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Organometallic chemistry offers novel concepts in structural diversity and molecular recognition that can be used in drug design. Here, we consider DNA recognition by eta 6-arene Ru(II) anticancer complexes by an induced-fit mechanism. The stereochemistry of the dinuclear complex [((eta 6-biphenyl)RuCl(en))2-(CH2)6]2 + (3, en = ethylenediamine) was elucidated by studies of the half unit [(eta 6-biphenyl)RuCl(Et-en)]+ (2, where Et-en is Et(H)NCH2CH2NH2). The structures of the separated RRu*RN* and SRu*RN* diastereomers of 2 were determined by x-ray crystallography; their slow interconversion in water (t(1/2) approximately 2 h, 298 K, pH 6.2) was observed by NMR spectroscopy. For 2 and 3 the RRu*RN* configurations are more stable than SRu*RN* (73:27). X-ray and NMR studies showed that reactions of 2 and 3 with 9-ethylguanine gave rise selectively to SRu*RN* diastereomers. Dynamic chiral recognition of guanine can lead to high diastereoselectivity of DNA binding. The dinuclear complex 3 induced a large unwinding (31 degrees) of plasmid DNA, twice that of mononuclear 2 (14 degrees), and effectively inhibited DNA-directed RNA synthesis in vitro. This dinuclear complex gave rise to interstrand cross-links on a 213-bp plasmid fragment with efficiency similar to bifunctional cisplatin, and to 1,3-GG interstrand and 1,2-GG and 1,3-GTG intrastrand cross-links on site-specifically ruthenated 20-mers. Complex 3 blocked intercalation of ethidium considerably more than mononuclear 2. The concept of induced-fit recognition of DNA by organometallic complexes containing dynamic stereogenic centers via dynamic epimerization, intercalation, and cross-linking may be useful in the design of anticancer drugs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14657383</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>100</Volume>
<Issue>25</Issue>
<PubDate>
<Year>2003</Year>
<Month>Dec</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers.</ArticleTitle>
<Pagination>
<MedlinePgn>14623-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Organometallic chemistry offers novel concepts in structural diversity and molecular recognition that can be used in drug design. Here, we consider DNA recognition by eta 6-arene Ru(II) anticancer complexes by an induced-fit mechanism. The stereochemistry of the dinuclear complex [((eta 6-biphenyl)RuCl(en))2-(CH2)6]2 + (3, en = ethylenediamine) was elucidated by studies of the half unit [(eta 6-biphenyl)RuCl(Et-en)]+ (2, where Et-en is Et(H)NCH2CH2NH2). The structures of the separated RRu*RN* and SRu*RN* diastereomers of 2 were determined by x-ray crystallography; their slow interconversion in water (t(1/2) approximately 2 h, 298 K, pH 6.2) was observed by NMR spectroscopy. For 2 and 3 the RRu*RN* configurations are more stable than SRu*RN* (73:27). X-ray and NMR studies showed that reactions of 2 and 3 with 9-ethylguanine gave rise selectively to SRu*RN* diastereomers. Dynamic chiral recognition of guanine can lead to high diastereoselectivity of DNA binding. The dinuclear complex 3 induced a large unwinding (31 degrees) of plasmid DNA, twice that of mononuclear 2 (14 degrees), and effectively inhibited DNA-directed RNA synthesis in vitro. This dinuclear complex gave rise to interstrand cross-links on a 213-bp plasmid fragment with efficiency similar to bifunctional cisplatin, and to 1,3-GG interstrand and 1,2-GG and 1,3-GTG intrastrand cross-links on site-specifically ruthenated 20-mers. Complex 3 blocked intercalation of ethidium considerably more than mononuclear 2. The concept of induced-fit recognition of DNA by organometallic complexes containing dynamic stereogenic centers via dynamic epimerization, intercalation, and cross-linking may be useful in the design of anticancer drugs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Haimei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parkinson</LastName>
<ForeName>John A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nováková</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bella</LastName>
<ForeName>Juraj</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Fuyi</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dawson</LastName>
<ForeName>Alice</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gould</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parsons</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brabec</LastName>
<ForeName>Viktor</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sadler</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2003</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003432">Cross-Linking Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004278">DNA, Superhelical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5Z93L87A1R</RegistryNumber>
<NameOfSubstance UI="D006147">Guanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>879-08-3</RegistryNumber>
<NameOfSubstance UI="C014542">9-ethylguanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012321">DNA-Directed RNA Polymerases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EN464416SI</RegistryNumber>
<NameOfSubstance UI="D004996">Ethidium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q20Q21Q62J</RegistryNumber>
<NameOfSubstance UI="D002945">Cisplatin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002945" MajorTopicYN="N">Cisplatin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003432" MajorTopicYN="N">Cross-Linking Reagents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004278" MajorTopicYN="N">DNA, Superhelical</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012321" MajorTopicYN="N">DNA-Directed RNA Polymerases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004996" MajorTopicYN="N">Ethidium</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006147" MajorTopicYN="N">Guanine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013237" MajorTopicYN="N">Stereoisomerism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14657383</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.2434016100</ArticleId>
<ArticleId IdType="pii">2434016100</ArticleId>
<ArticleId IdType="pmc">PMC299748</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Apr 6;38(14):4382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10194357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 25;38(21):6781-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10346899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Feb 1;29(3):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inorg Chem. 2001 Jan 29;40(3):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2001 Oct 25;44(22):3616-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1999 Sep 8;99(9):2777-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11749500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Mar 27;124(12):3064-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11902898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2002 May 20;86(10):1652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12085218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Jan 8;125(1):173-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12515520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Oct 7;42(39):11544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14516206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 1998 Jul 3;37(12):1634-1654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29711516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(7):1961-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6585785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1983 May 10;22(10):2406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6860636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Nov 28;34(47):15480-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7492537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8506383</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Édimbourg</li>
</settlement>
<orgName>
<li>Université d'Édimbourg</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bella, Juraj" sort="Bella, Juraj" uniqKey="Bella J" first="Juraj" last="Bella">Juraj Bella</name>
<name sortKey="Brabec, Viktor" sort="Brabec, Viktor" uniqKey="Brabec V" first="Viktor" last="Brabec">Viktor Brabec</name>
<name sortKey="Dawson, Alice" sort="Dawson, Alice" uniqKey="Dawson A" first="Alice" last="Dawson">Alice Dawson</name>
<name sortKey="Gould, Robert" sort="Gould, Robert" uniqKey="Gould R" first="Robert" last="Gould">Robert Gould</name>
<name sortKey="Novakova, Olga" sort="Novakova, Olga" uniqKey="Novakova O" first="Olga" last="Nováková">Olga Nováková</name>
<name sortKey="Parkinson, John A" sort="Parkinson, John A" uniqKey="Parkinson J" first="John A" last="Parkinson">John A. Parkinson</name>
<name sortKey="Parsons, Simon" sort="Parsons, Simon" uniqKey="Parsons S" first="Simon" last="Parsons">Simon Parsons</name>
<name sortKey="Sadler, Peter J" sort="Sadler, Peter J" uniqKey="Sadler P" first="Peter J" last="Sadler">Peter J. Sadler</name>
<name sortKey="Wang, Fuyi" sort="Wang, Fuyi" uniqKey="Wang F" first="Fuyi" last="Wang">Fuyi Wang</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Chen, Haimei" sort="Chen, Haimei" uniqKey="Chen H" first="Haimei" last="Chen">Haimei Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:14657383
   |texte=   Induced-fit recognition of DNA by organometallic complexes with dynamic stereogenic centers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:14657383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021